
HIWIN Linear Guideway Technical Information

HIWIN Linear Guideway

Technical Information Index

Preface

1. General Information	
1-1 Advantages and Teatures of Linear Guideway · · · · · · · · · · · · · · · · · · ·	1
1-2 The principles of selecting linear guideway	4
1-3 Basic Load Rating of Linear Guideways · · · · · · · · · · · · · · · · · · ·	5
1-4 The Service Life of Linear Guideways · · · · · · · · · · · · · · · · · · ·	5
1-5 Acting Load · · · · · · · · · · · · · · · · · · ·	8
1-6 Friction · · · · · · · · · · · · · · · · · · ·	_
1-7 Lubrication	11
1-8 The Butt-joint Rail	
1-9 Layout Method · · · · · · · · · · · · · · · · · · ·	
1-10 Installation of Linear Guideway	
2. HIWIN Linear Guideway Product Series · · · · · · · · · · · · · · · · · · ·	17
2-1 LG Series	
2-1-1. Features of the LG Series Linear Guideway · · · · · · · · · · · · · · · · · · ·	
2-1-2. Construction of LG Series · · · · · · · · · · · · · · · · · · ·	
2-1-3. Model Number of LG Series · · · · · · · · · · · · · · · · · · ·	
2-1-4. Types	
2-1-5. Accuracy Classes · · · · · · · · · · · · · · · · · ·	
2-1-6. Preload · · · · · · · · · · · · · · · · · · ·	
2-1-7. Stiffness · · · · · · · · · · · · · · · · · ·	
2-1-8. Lubrication · · · · · · · · · · · · · · · · · · ·	
2-1-9. Dust Protection Equipment · · · · · · · · · · · · · · · · · · ·	
2-1-10. Friction · · · · · · · · · · · · · · · · · · ·	
2-1-11. The Accuracy Tolerance of Mounting Surface	
2-1-12. Cautions for Installation · · · · · · · · · · · · · · · · · · ·	
2-1-13. Standard Length and Max. Length of Rail · · · · · · · · · · · · · · · · · · ·	
2-1-14. Dimensions for HIWIN LG Series	33
2-2 AG Series	
2-2-1. Features of the AG Series Linear Guideway	
2-2-2. Construction of AG Series · · · · · · · · · · · · · · · · · · ·	
2-2-3. Model Number of AG Series · · · · · · · · · · · · · · · · · · ·	
2-2-4. Types	
2-2-5. Accuracy Classes · · · · · · · · · · · · · · · · · ·	
2-2-6 Preload	

	2-2-7. Stiffness · · · · · · · · · · · · · · · · · ·
	2-2-8. Lubrication · · · · · · · · · · · · · · · · · · ·
	2-2-9. Dust Protection Equipment · · · · · · · · · · · · · · · · · · ·
	2-2-10. Friction · · · · · · · · · · · · · · · · · · ·
	2-2-11. The Accuracy Tolerance of Mounting Surface · · · · · · · · · · · · · · · · · · ·
	2-2-12. Cautions for Installation · · · · · · · · 48
	2-2-13. Standard Length and Max. Length of Rail · · · · · · · · · · · · · · · · · · ·
	2-2-14. Dimensions for HIWIN AG Series50
2	-3 Miniature MGN/MGW Series
	2-3-1. Features of MGN Series · · · · · · · · · · · · · · · · · · ·
	2-3-2. Construction of MGN Series · · · · · · · · · · · · · · · · · · ·
	2-3-3. Feature of MGW Series · · · · · · · · · · · · · · · · · · ·
	2-3-4. Construction of MGW Series · · · · · · · · · · · · · · · · · · ·
	2-3-5 Application55
	2-3-6 Model Number of MGN/MGW Series · · · · · · · · · · · · · · · · · · ·
	2-3-7 Accuracy Standards · · · · · · · · · · · · · · · · · · ·
	2-3-8 Preload58
	2-3-9 Dust Protection Equipment · · · · · · · · · · · · · · · · · · ·
	2-3-10 Shoulder Heights and Fillets · · · · · · · · · · · · · · · · · · ·
	2-3-11 Standard Length and Maximum Length of Linear Guideways · · · · · · · · · · 59
	2-3-12 Dimensions for HIWIN MGN/MGW Series · · · · · · · · · · · · · · · · · · ·
2	-4 IG Series
	2-4-1 Model Number of IG · · · · · · 63
	2-4-2 Technical Data of HIWIN Intelligent Linear Guideway (IG) · · · · · · · · · · · · · 64
	2-4-3 Accuracy Classes64
	2-4-4 Preload
	2-4-5 Dimensions for HIWIN IG Series · · · · · · · · · · · · · · · · · · ·
2	-5 El Series
2	-6 QI Series72
2	-7 Option Function
	Metallic End Can Type

(The specifications in this catalogue are subject to change without notification.)

Preface

A linear guideway allows a type of linear motion that utilizes rolling balls. By using circulating balls between the rail and the block, a linear guideway can achieve high precision linear motion. Compared to a traditional slide, the coefficient of friction for a linear guideway is only 1/50th. Because of the restraint effect between the rails and the blocks, linear guideways can take up loads in both the up/down and the left/right directions. With these features, linear guideways can greatly enhance moving accuracy, it is especially true when accompanied with precision ball screws

1 General Information

1-1 Advantages and Teatures of Linear Guideways

1-1-1 Advantages of Linear Guideways

(1) High positional accuracy

When a loaded plate is driven by a linear motion guideway, the frictional contact between the loaded plate and the bed is rolling contact. The coefficient of friction is only 1/50th of traditional contact, and the difference between the dynamic and the static coefficient of friction is small. Therefore, there would be no slippage while the table is moving.

(2) Long life with highly accurate motion

With a traditional slide, errors in accuracy are caused by the counter flow of the oil film. Insufficient lubrication causes wear between the contact surfaces, which become increasingly inaccurate. In contrast, rolling contact has little wear; therefore, machine can achieve a long life with highly accurate motion.

(3) High speed motion is possible with a low driving force

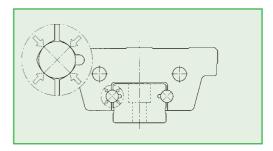
Because the linear guideway has little friction resistance, only a small driving force is needed for moving the loaded table. The result of this fact is the power savings. This is especially true for the reciprocating parts.

(4) Equal loading capacity in all directions

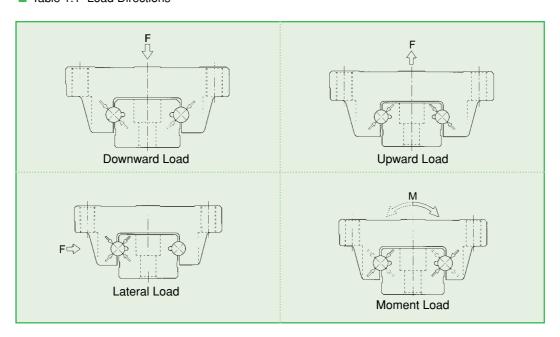
Because of its special constraint design, a linear guideway can take up loads in either the up/down or left/right directions. Conventional linear slides can only take up small loads in the direction parallel to the contact surface. They are also more likely to become inaccurate when they are subjected to these loads.

(5) Easy installation and interchangeability

Installing a linear guideway is fairly easy. Grinding or milling the machine surface, following a recommended installation procedure, and tightening the bolts to their specified torque can achieve high accuracy linear motion. However, a traditional slide takes more time to scrape the tracks. If any errors in accuracy arise, the surface must be scraped again. In contrast, linear guideways are interchangeable.


(6) Easy lubrication

With a traditional sliding system, insufficient lubrication wears out the contact surfaces. Also, it can be quite difficult to supply sufficient lubrication to the contact surfaces because finding an appropriate lubrication point is not very easy. With a linear motion guideway, grease can be easily supplied through the grease nipple on the linear guideway block. It is also possible to utilize a centralized oil lubrication system by piping the lubrication oil to piping joint.


1-1-2 Features of the HIWIN Linear Guideway

(1) Gothic contact

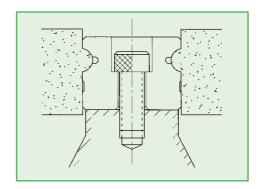
The HIWIN linear guideway has the Gothic arch contact design. Because of the special constraint design, the linear guideway can take up loads in up/down and left/right directions. Furthermore, the symmetrical four-point constraint design gives no positional deflection while the linear guideway is running. Accordingly, the rigidity and accuracy of the HIWIN linear guideway is higher than that of circular contact.

■ Table 1.1 Load Directions

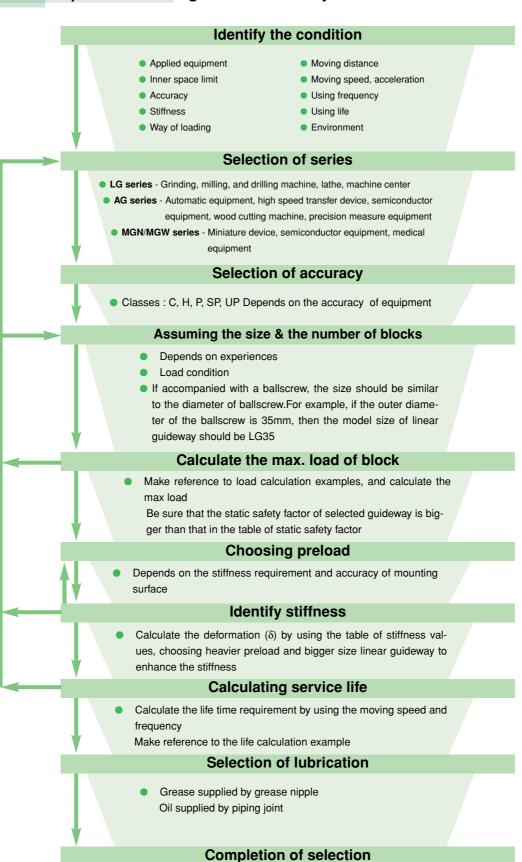
■ Table 1.2 Comparison of Both Gothic Arch Contact Design and Circular Contact Design

Gothic Arch Contact	Circular Contact
Lateral Load	Shift Lateral Load
✓ When a linear guideway is subjected a lateral load, balls will have no positional deflection because the balls are completely restrained within raceway groove. This design achieves a high running accuracy.	X Because there is no constraint in the perpendicular direction, a large positional deflection will occur when a lateral load is applied to this linear motion guideway. It will also have poor accuracy.
For this simple two-row Gothic arch contact design, it is possible to handle loads in both the up/down and the lateral directions.	Compared to a Gothic arch design, a circular design needs four circular arcs to handle the same loading con- dition.

(2) Interchangeability


Because of restricted dimension control, the dimensional difference of linear guideways can be kept in a reasonable range, and which means that the specific series of linear guideways possess the interchangeability. For this characteristic, it is good to have the stock of rails and blocks separately for saving the space of warehouse.

(3) The optimum design


As for the design of circulating system, HIWIN has obtained patents from many developed countries. Enlarged ball diameter and circulating curve ratio of design makes circulation smoother as well as makes service life longer.

(4) High accuracy

As shown in the figure, both sides of raceway groove are ground simultaneously, and this ensures nearly perfect parallelism for all four surfaces. Therefore, high accuracy repetition is possible when it is installed by tightening the mounting bolts with torque wrench to a specified torque.

1-2 The Principles of Selecting Linear Guideway

1-3-1 Basic Static Load Rating (C₀)

(1) Definition

A local permanent deformation will be caused between the raceway surface and the rolling balls when a linear guideway is subjected to an excessively large load or an impact load while either at rest or in motion. If the amount of this permanent deformation exceeds a certain limit, it becomes an obstacle to the smooth operation of the linear guideway. Generally, the definition of the basic static load rating is a static load of constant magnitude and direction, which results in a total permanent deformation of 0.0001 times the diameter of the rolling ball for the rolling ball and the raceway at the contact point subjected to the largest stress. The value is described in the dimension tables for each linear guideway. A designer can select a suitable linear guideway by referring to these tables. The maximum static load applied to a linear guideway must not exceed the basic static load rating.

(2) Static safety factor

When the Guideway system is static or under low speed motion. Static safety factor which depend on environmental and operating conditions, must be taken into consideration. A larger safety factor is especially important for guideways subject to impact loads (See Table 6). The static load can be obtained by using Eq. 1.1.

■ Table 1.3 Static Safety Factor

Load Condition	f_s
Normal Load	1.0~3.0
With impacts/vibrations	3.0~5.0

$$f_s = \frac{C_o}{P}$$
 Equal. 1.1

 C_o : Static load rating P : Working load f_s : Static safety factor

1-3-2 Basic Dynamic Load Rating (C)

Definition

The basic dynamic load rating is the load that does not change in direction or magnitude and results in a nominal life of 50km of operation for a linear guideway. The values for the basic dynamic load rating of each guideway are shown in dimension tables. They can be used to predict the service life for a selected linear guideway.

1-4 The Service Life of Linear Guideways

1-4-1 Service Life

When the raceway and the rolling balls of a linear guideway are continuously subjected to repeated stresses, the raceway surface shows fatigue. Flaking will eventually occur. This is called fatigue flaking. The life of a linear guideway is defined as the total distance traveled until the fatigue flaking appears at the surface of raceway or rolling balls.

1-4-2 Nominal Life (L)

The service life varies widely even when the linear motion guideways are manufactured in the same way or operated under the same motion conditions. For this reason, nominal life is used as the criteria for predicting the service life of a linear motion guideway. The nominal life is the total distance that 90% of a group of identical linear motion guideways, operated under identical conditions, can travel without flaking. When the basic dynamic rated load is applied to a linear motion guideway, the nominal life is 50km.

1-4-3 Calculation of Nominal Life

The acting load will affect the nominal life of a linear guideway. Based on the selected basic dynamic rated load and the actual load, the nominal life can be calculated by using Equal. 1.2.

$$L = \left(\frac{C}{P}\right)^3 \times 50 km = \left(\frac{C}{P}\right)^3 \times 31 mile \qquad \text{Equal. 1.2}$$

L: Nominal life

C: Basic dynamic load rating

P: Actual load

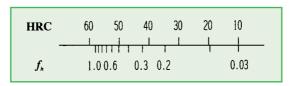
 P_c : Calculated load

If the environmental factors are taken into consideration, the nominal life is influenced widely by the motion conditions, the hardness of the raceway, and the temperature of the linear guideway. The relationship between these factors is expressed in Eq. 1.3.

$$L = \left(\frac{f_h \times f_t \times C}{f_w \times P_c}\right)^3 \times 50 km = \left(\frac{f_h \times f_t \times C}{f_w \times P_c}\right)^3 \times 31 mile \quad \cdots \quad \text{Equal. 1.3}$$

$$L : \text{Nominal life} \qquad \qquad f_h : \text{Hardness factor}$$

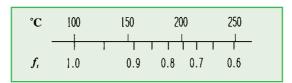
$$C : \text{Basic dynamic load rating} \qquad f_t : \text{Temperature factor}$$


 f_{w} : Load factor

1-4-4 Factors of Normal Life

(1) Hardness factor (f_h)

In general, the raceway surface in contact with the balls must have the hardness of HRC 58~64 to an appropriate depth. When the specified hardness is not obtained, the permissible load is reduced and the nominal life is decreased. In this situation, the basic dynamic load rating and the basic static load rating must be multiplied by the hardness factor for calculation.


Raceway hardness

(2) Temperature factor (f_i)

When the temperature of a linear guideway exceeds 100 $^\circ$ c, the permissible load is reduced and the nominal life is decreased. Therefore, the basic dynamic load rating and the basic static load rating must be multiplied by the temperature factor.

Temperature

(3) Load factor (f_w)

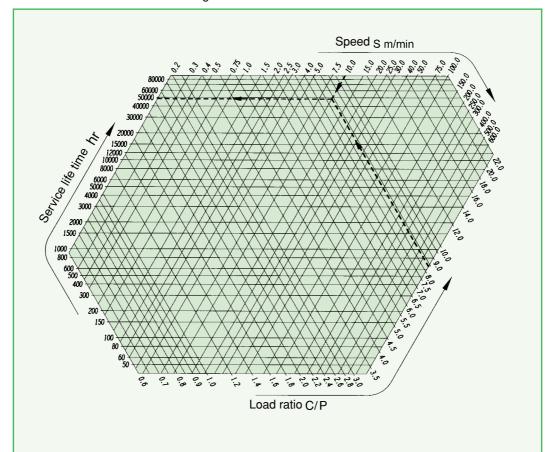
The loads acting on a linear guideway include the weight of slide, the inertia load at the times of start and stop, and the moment loads caused by overhanging. These load factors are especially difficult to estimate because of mechanical vibrations and impacts. Therefore, the load on linear guideway should be

■ Table 1.4 Load factor

Loading Condition	Service Speed	fw
No impacts & vibration	Low speed V≤15 m/min	1~1.5
Normal load	Medium speed 15 < V ≤60 m/min	1.5~2.0
With impacts & vibration	High speed V > 60 m/min	2.0~3.5

(4) Calculation of the service life time (L_h)

Transform the nominal life into the life time by using the speed and frequency.


$$L_{h} = \frac{L \times 10^{3}}{S \times 60} = \frac{\left(\frac{C}{P}\right)^{3} \times 50 \times 10^{3}}{S \times 60} hr$$
Equal. 1.4

$$L_{h} : \text{Service life time(hr)} \qquad S : \text{Speed (m/min)}$$

$$L : \text{Nominal life (km)} \qquad C/P : \text{Load ratio}$$

If the load ratio and speed have been calculated, the service life time can be obtained easily from the service life nomogram.

■ Table 1.5 Service life time nomogram

A surface grinding machine has a working load 2,000kgf(500kgf per block) and 10m/min feed rate. What is the service life time when the machine uses a set of HIWIN LGW35CA linear guideways?

- By checking the dimension table, the basic dynamic load rating of LGW35CA is 4,180kgf, so the load ratio is: $\frac{C}{P} = \frac{4,180}{500} = 8.36$
- Calculate the nominal life $L = \left(\frac{C}{P}\right)^3 \times 50 = (8.36)^3 \times 50 = 29,214 \text{km}$
- According to the intersection of the line of load ratio and the line of speed, the service life time is 49,000hr
- Lh can also be obtained by substituting the numerical values into Eq. 1.4

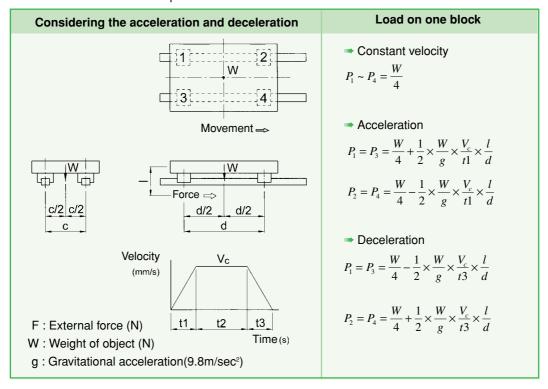
$$L_h = \frac{\left(\frac{C}{P}\right)^3 \times 50 \times 10^3}{S \times 60} = \frac{(8.36)^3 \times 50 \times 10^3}{10 \times 60} = 48,690 \text{hr}$$

Assume the frequency is 50% and its service life is 11 years.

1-5 Acting Load

1-5-1 Calculation of Load

Several factors affect the calculation of the loads acting on a linear guideway (such as the position of the center gravity of object, the thrust position, and the inertial forces at the times of start and stop). To obtain the correct load value, each loading condition should be carefully taken into consideration.


(1) Load on one block

■ Table 1-6 Calculation Examples

Patterns	Loads layout	Load on one block
P ₁ P ₂ P ₃	Force 13	$P_{1} = \frac{W}{4} + \frac{F}{4} + \frac{F \times a}{2c} + \frac{F \times b}{2d}$ $P_{2} = \frac{W}{4} + \frac{F}{4} + \frac{F \times a}{2c} - \frac{F \times b}{2d}$ $P_{3} = \frac{W}{4} + \frac{F}{4} - \frac{F \times a}{2c} + \frac{F \times b}{2d}$ $P_{4} = \frac{W}{4} + \frac{F}{4} - \frac{F \times a}{2c} - \frac{F \times b}{2d}$
$\begin{array}{c c} F & P_{2} \downarrow \\ \hline P_{1} \downarrow & P_{4} \downarrow \\ \hline P_{3} \downarrow & P_{4} \downarrow \\ \hline \end{array}$	Force Column Col	$P_{1} = \frac{W}{4} + \frac{F}{4} + \frac{F \times a}{2c} + \frac{F \times b}{2d}$ $P_{2} = \frac{W}{4} + \frac{F}{4} + \frac{F \times a}{2c} - \frac{F \times b}{2d}$ $P_{3} = \frac{W}{4} + \frac{F}{4} - \frac{F \times a}{2c} + \frac{F \times b}{2d}$ $P_{4} = \frac{W}{4} + \frac{F}{4} - \frac{F \times a}{2c} - \frac{F \times b}{2d}$
P, P	(3) (2) (3) (4) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	$P_1 = P_3 = -\frac{W}{4} + \frac{F \times l}{2d}$ $P_2 = P_4 = \frac{W}{4} + \frac{F \times l}{2d}$
P. P	Force Sep D Color of the colo	$P_1 \sim P_4 = -\frac{W \times h}{2d} + \frac{F \times l}{2d}$
	1 F 2 Force W S 0	$P_{1} \sim P_{4} = \frac{W \times h}{2c} + \frac{F \times l}{2c}$ $P_{11} = P_{13} = \frac{W}{4} + \frac{F}{4} + \frac{F \times k}{2d}$ $P_{12} = P_{14} = \frac{W}{4} + \frac{F}{4} - \frac{F \times k}{2d}$

(2) Loads with inertia forces

■ Table 1.7 Calculation examples for loads with inertia forces

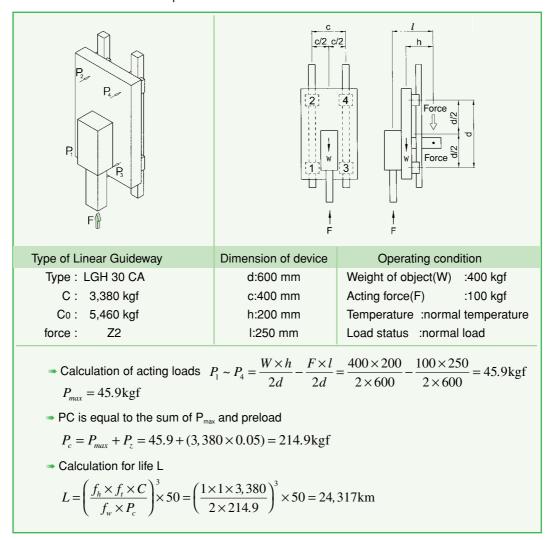
1-5-2 Calculation of the Mean Load for Fluctuating Loads

When the load on a linear guideway fluctuates greatly, the variable load condition must be considered in the life calculation. The definition of the mean load is the load equal to the bearing fatigue load under the variable loading conditions. It can be calculated by using table 1.1.

 \blacksquare Table 1.8. Calculation examples for mean load (P_m)

Operation Condition	Mean load
Variation in steps P P ₁ P ₂ P _n P _n	$P_{m} = \sqrt[3]{\frac{1}{L}} \Big(P_{1}^{3} \times L_{1} + P_{2}^{3} \times L_{2} + + P_{n}^{3} \times L_{n} \Big)$ $P_{m} : \text{Mean load}$ $P_{n} : \text{Fluctuating load}$ $L : \text{Total running distance}$ $L_{n} : \text{Running distance under load } P_{n}$
Simple fluctuating P Pmin Pmin L	$P_m = \frac{1}{3} (P_{\min} + 2 \times P_{\max})$ P_m : Mean load P_{\min} : Min. load P_{max} : Max. load
Sin curve fluctuating Perace	$P_{\scriptscriptstyle m} = 0.65 \times P_{\scriptscriptstyle m max}$ $P_{\scriptscriptstyle m} : { m Mean fluctuating load}$ $P_{\scriptscriptstyle max} : { m Max. fluctuating load}$

1-5-3 Calculation for Bidirectional Equivalent Loads


When bidirectional loads applied to the linear guideway, the equivalent load can be obtained by using the following formulas

$$\begin{aligned} &\text{When } F_s > F_l & P_e = F_s + 0.5 \times F_l & \text{------} & \text{Equal. 1.5} \\ &\text{When } F_l > F_s & P_e = F_l + 0.5 \times F_s & \text{-----} & \text{Equal. 1.6} \\ & P_e : & \text{Equivalent load} \\ & F_s : & \text{Perpendicular} \\ & F_l : & \text{Lateral load} \end{aligned}$$

1-5-4 Calculation Example for Service Life

Besides the experiences, a suitable linear guideway should be selected based on the acting load. The service life is calculated from the ratio of the working load and the basic dynamic load rating.

■ Table 1.9 Calculation example for service life

1-6 Friction

As mentioned in the preface, a linear guideway allows a type of rolling motion, which is achieved by using balls. The coefficient of friction for a linear guideway can be as little as 1/50th of a traditional slide. Generally, the coefficient of friction of linear guideway is about 0.004, more or less differentiate from different series.

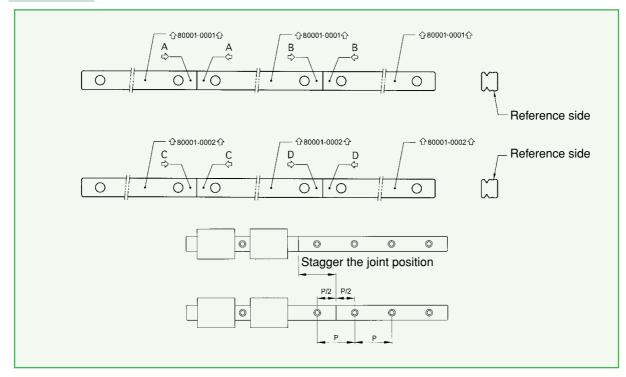
When a load is 10% or less than the basic static load rate, the most of the resistance com from the grease resistance and frictional resistance between balls. In contrast, if the load is more than the basic static load rate, the resistance will be mainly comes from the load.

 $F = \mu \times W + f \qquad \qquad \text{Equal. 1.7}$ $F : \text{friction (kgf)} \qquad \qquad \mu : \text{Coefficient of friction}$ $f : \text{friction resistance (kgf)} \qquad W : \text{Loads (kgf)}$

1-7 Lubrication

1-7-1 Grease

Each linear guideway is lubricated with lithium soap base grease No. 2 before shipment. After the linear guideway been installed, we recommended that the replenishment should be held every 100km. It is possible to carry out the lubrication by piping the grease nipple. Generally, the grease is suitable for the running speed not over 60 m/min or the cooling function is not important.


$$T = \frac{100 \times 1000}{S \times 60} \, \text{hr} \qquad \qquad \text{Equal. 1.8}$$

$$T : \text{ Feeding frequency of oil(hour)}$$

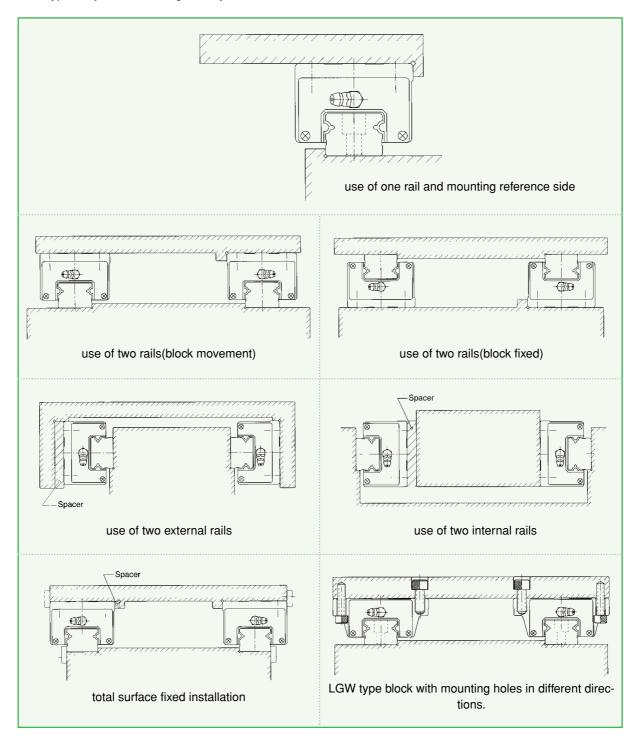
$$S : \text{speed(m/min)}$$

1-7-2 Oil

The recommended viscosity of oil is about 30~150cst. The standard grease nipple may optionally be replaced by oil piping joint for oil type lubrication.

Since the oil is easier to evaporate than the grease, the recommended oil feeding rate is about 0.3cm3/hr.

1-8 The Butt-joint Rail

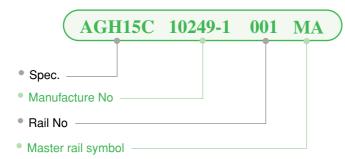


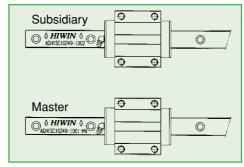
The butt-joint rail should be installled by following the arrow sign and ordinal number which is marked on the surface of each rail. For paired butt-joint rails, the jointed position should be interlaced for avoiding the accuracy problem due to the difference between different rails. (see figure)

1-9 Layout Method

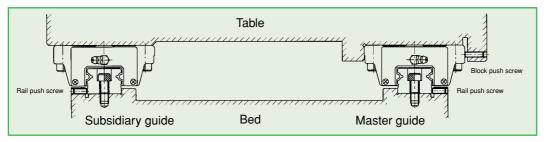
The linear guideway can take up loads in up/down, left/right direction. The application depends on the machine requirements and load directions.

The typical layouts for linear guideway are shown below:

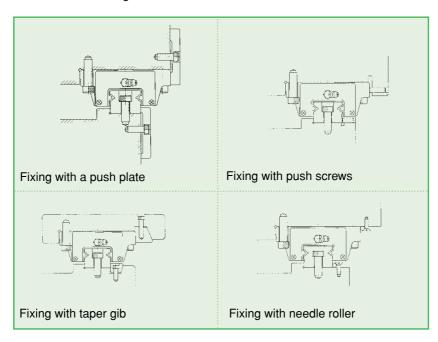


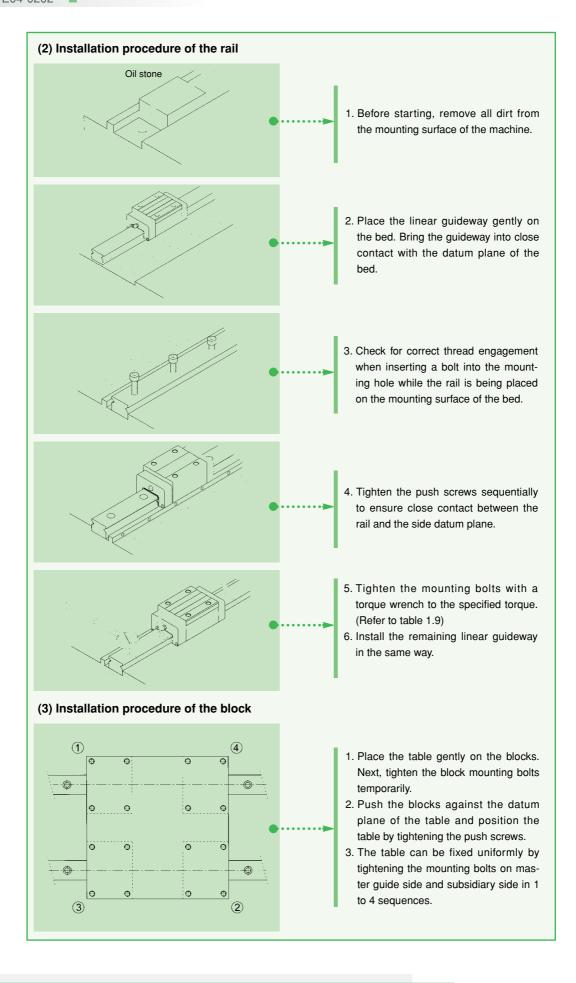

1-10 Installation of Linear Guideway

Three installation methods are recommended based on the required running accuracy, the degree of impacts, and vibrations.

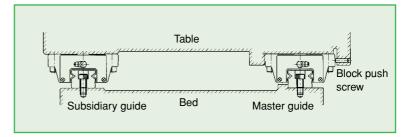

Master and Subsidiary Guide

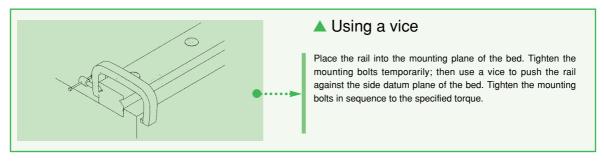
For non-interchangeable type Linear Guideway, there are some difference between the master guide and subsidiary guide. The accurancy of master guide's side datum plane is better than subsidiary's and it can be a reference side for installation \circ There is a mark "MA" printed on the rail, show as the figure.



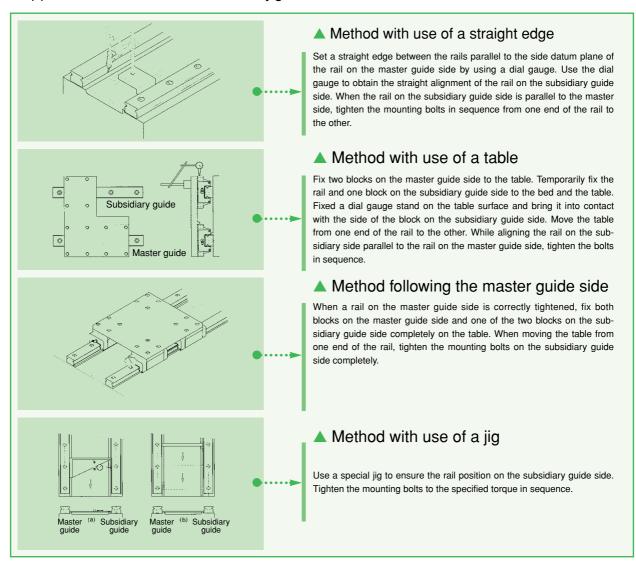

1-10-1 Installation Example for Highly Required in Rigidity and Accuracy when Vibration and Impacts

(1) Fixing methods

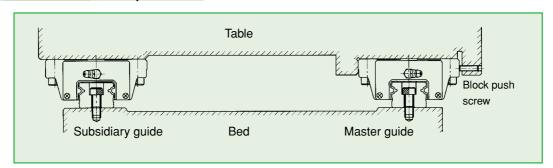

It is possible that the rails and the blocks will be displaced when the machine is subjected to vibrations and impacts. To eliminate these difficulties and achieve high running accuracy, the following four methods are recommended for fixing.



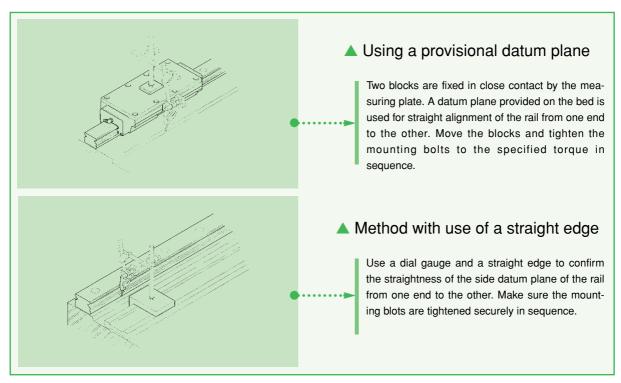
1-10-2 Installation Example for the Case when a Rail on the Master Side Has no Push Screws


To ensure the parallelism between the subsidiary guide and the master guide without push screws, the following rail installation methods are recommended. The block installation is the same as which mentioned previously.

(1) Installation of the rail on the master guide side



(2) Installation of the rail on the subsidiary guide side



1-10-3 Ilnstallation Example When There Is No Side Surface of The Bed on The Master Guide Side

To ensure parallelism between the subsidiary guide and the master guide when there is no side surface, the following rail installation method is recommended. The installation of the blocks is the same as which mentioned previously.

(1) Installation of the rail on the master guide side

(2) Installation of the rail on the subsidiary guide side

The method of installation for the rail on the subsidiary guide side is the same as the case without push screws.

2. HIWIN Linear Guideway Product Series

(1) Types & Series

For satisfying various needs of customers, HIWIN has developed many products: LG series for machine tools which require high accuracy and rigidity; the low profile AG series for automation industry; and the miniature MGN/MGW series.

■ Table 2.1 Types & Series

O a mi a a	Assembly	Lord	Square		Flange	
Series	Height	Load	Tap hole	Tap hole	Drilled hole	Combination
	▲ High	Heavy Load	LGH - CA	-	-	-
	A High	Super Heavy Load	LGH - HA	-	-	-
LG	▼ Low	Heavy Load	-	LGW - CA	LGW - CB	LGW - CC
		Super Heavy Load	-	LGW - HA	LGW - HB	LGW - CC
40	▼ Low	Medium Load	AGH - SA	AGW - SA	AGW - SB	-
AG	▼ LOW	Heavy Load	AGH - CA	AGW - CA	AGW - CB	-
MGN	_	Standard	MGN - C	-	-	-
IVIGN		Long	MGN - H	-	-	-
MGW		Standard	MGW - C	-	-	-
IVIGVV		Long	MGW - H	-	-	-

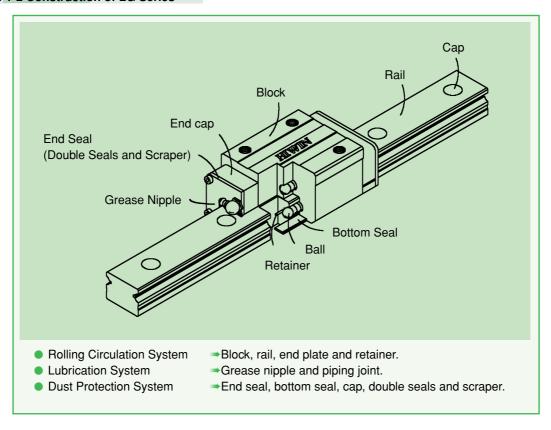
(2) Accuracy Classes

■ Table 2.2 Accuracy Classes

		А	ssembly Ty	Interchangeable Type				
Series	Normal	High	Precision	Super	Ultra Precision	Normal	High	Precision
	(C)	(H)	(P)	Precision (SP)	(UP)	(C)	(H)	(P)
LG	•	•	•	•	•	•	•	•
AG	•	•	•	•	•	•	•	•
MGN	•	•	•	-	-	•	•	•
MGW	•	•	•	-	-	-	-	-

(3) Classification of Preload

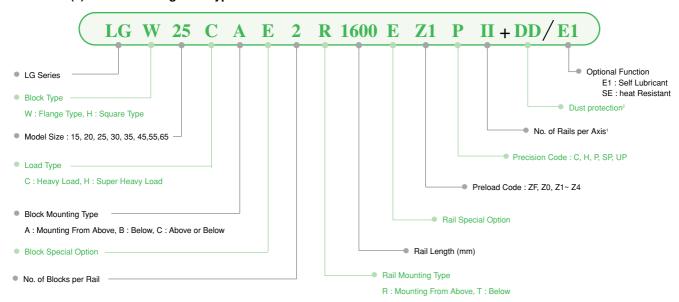
■ Table 2.3 Preload


		Assembly Type						Interchangeable Type		
Series	C Light Clearance (ZF)	C~UP Very Light (Z0)	C~UP Light (Z1)	H~UP Medium (Z2)	H~UP Heavy (Z3)	H~UP Super Heavy (Z4)	C Light Clearance (ZF)	C~UP Very Light (Z0)	C~P Light (Z1)	
LG	•	•	•	•	•	•	•	•	•	
AG	•	•	•	•	•	-	•	•	•	
MGN	•	•	•	-	-	-	•	•	•	
MGW	•	•	•	-	-	-	-	-	-	

2-1 LG Series

2-1-1 Features of The LG Series Linear Guideway

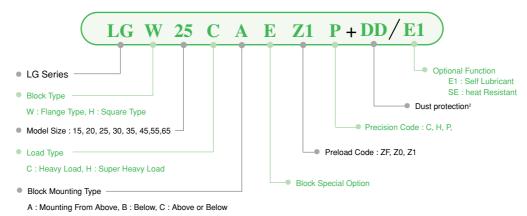
The enlarged ball diameter design has increased the stiffness and the loading capacity, and this makes the LG series guideway especially suitable for the application with heavy working load. Besides, the optimum design of circulating system makes the movement smooth. The retainer is designed for avoiding the balls fall out, even if the blocks are removed from the rail while installing.


2-1-2 Construction of LG Series

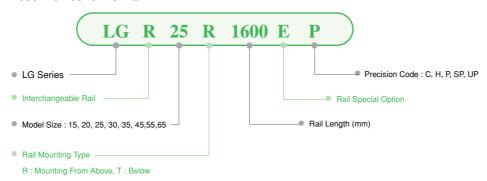
2-1-3 Model Number of LG Series

LG series guideway can be classified into non-interchangeable and interchangeable types. The size of two types is same as each other. The main difference between two types is that the interchangeable type of blocks and rails can be freely exchanged, and their accuracy can reach up to P class. Because of the restrictedly dimensional control, the interchangeable type linear guideway is a smart choice for customer when rails don't need to be paired for an axis. The model number of LG series contains the size, type, accuracy class, preload class, etc.

(1) Non-interchangeable type



Note:


- 1. The Roman numerals used to express the number of rails used in one axis. As for the single rail in an axis, it shows no symbol.
- 2. For dust protection, it is no symbol if it is standard(end seal and bottom seal).
- ZZ: End seal, bottom seal and scraper
- KK: Double seals, bottom seal and scraper.
- DD: Double seals and bottom seal

(2) Interchangeable type

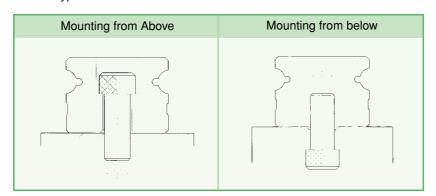
Model Number of LG Block

Model Number of LG Rail

2-1-4 LG Types

(1) Block Types

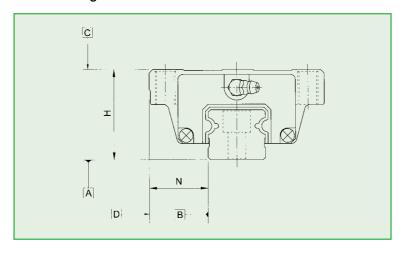
HIWIN offers two types of linear guideway which are flange and square types. Because of the low assembly height and larger mounting surface, the flange type is good for heavy moment load application.


■ Table 2.4 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Application
Square	LGH-CA LGH-HA		28 ↓ 90	100 ↓ 4000	•Machine Center •NC Lathe •Grinding Machine •Precision Machining Machine •Heavy Cutting Machine •Automation Device
	LGW-CA LGW-HA		24 ↓ 90	100 ↓ 4000	Transportation Equipment Measuring Equipment Devices Required High Positional Accuracy
Flange	LGW-CB LGW-HB		24 ↓ 90	100 ↓ 4000	
	LGW-CC LGW-HC		24 ↓ 90	100 ↓ 4000	

(2) Rail Types

Besides the standard top mounting type, HIWIN also offers the bottom mounting type of rails to customers.


■ Table 2.5 Rail Types

2-1-5 Accuracy Classes

The accuracy of LG series can be classified into normal(C), high(H), precision(P), super precision(SP), ultra precision (UP), five classes. Choosing the class by referencing the accuracy of applied equipment.

(1) Accuracy of non-interchangeable LG

■ Table 2.6 Accuracy Standards

	Unit mm	LG - 15, 20						
	Item	Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)		
Dime	nsion tolerance of height H	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008		
Dime	ension tolerance of width N	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008		
Pair	Variation of height H	0.02	0.01	0.006	0.004	0.003		
	Variation of width N (Master Rail)	0.02	0.01	0.006	0.004	0.003		
	Preload classes	ZF, Z0, Z1 Z0 ~ Z3						
Running para	Illelism of block surface C to surface A	See Table 2.14						
Running para	Illelism of block surface D to surface B	See Table 2.14						

■ Table 2.7 Accuracy Standards

	Unit mm	LG - 25, 30, 35				
ltem		Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimer	Dimension tolerance of height H		± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dime	Dimension tolerance of width N		± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Pair	Variation of height H	0.02	0.015	0.007	0.005	0.003
	Variation of width N (Master Rail)	0.03	0.015	0.007	0.005	0.003
	Preload classes	ZF, Z0, Z1 Z0 ~ Z4				
Running parallelism of block surface C to surface A		See Table 2.14				
Running para	llelism of block surface D to surface B	See Table 2.14				

■ Table 2.8 Accuracy Standards

	Unit mm			LG - 45, 55			
	ltem		High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)	
Dimens	Dimension tolerance of height H Dimension tolerance of width N		± 0.05	0 - 0.05	0 - 0.03	0 - 0.02	
Dimen			± 0.05	0 - 0.05	0 - 0.03	0 - 0.02	
Pair	Variation of height H	0.03	0.015	0.007	0.005	0.003	
i an	Variation of width N (Master Rail)	0.03	0.02	0.01	0.007	0.005	
	Preload classes		ZF, Z0, Z1 Z0 ~ Z4				
Running parallelism of block surface C to surface A		See Table 2.14					
Running parallelism of block surface D to surface B				See Table 2.1	4		

■ Table 2.9 Accuracy Standards

	Unit mm			LG - 65			
ltem		Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)	
Dimen	Dimension tolerance of height H		± 0.07	0 - 0.07	0 - 0.05	0 - 0.03	
Dime	Dimension tolerance of width N		± 0.07	0 - 0.07	0 - 0.05	0 - 0.03	
Pair	Variation of height H	0.03	0.02	0.01	0.007	0.005	
7 4	Variation of width N (Master Rail)	0.03	0.025	0.015	0.01	0.007	
	Preload classes		ZF, Z0, Z1 Z0 ~ Z4				
Running parallelism of block surface C to surface A		See Table 2.14					
Running paral	Running parallelism of block surface D to surface B			See Table 2.1	4		

(2) Accuracy of interchangeable LG

■ Table 2.10 Accuracy Standards

	Unit mm	LG - 15, 20				
	Item		High (H)	Precision (P)		
Dimen	sion tolerance of height H	± 0.1	± 0.03	± 0.015		
Dimer	nsion tolerance of width N	± 0.1	± 0.03	± 0.015		
Pair	Variation of height H	0.02	0.01	0.006		
- ciii	Variation of width N	0.02	0.01	0.006		
Pair varia	ation of height H (multi sets)	0.06	0.04	0.026		
Preload classes		ZF, Z0, Z1 Z0, Z1				
Running parallelism of block surface C to surface A		See Table 2.14				
Running parallelism of block surface D to surface B		See Table 2.14				

■ Table 2.11 Accuracy Standards

	Unit mm		LG - 25, 30, 35				
	Item		High (H)	Precision (P)			
Dimens	sion tolerance of height H	± 0.1	± 0.04	± 0.02			
Dimen	sion tolerance of width N	± 0.1	± 0.04	± 0.02			
Pair	Variation of height H	0.02	0.015	0.007			
	Variation of width N	0.03	0.015	0.007			
Pair varia	ation of height H (multi sets)	0.06	0.045	0.027			
Preload classes		ZF, Z0, Z1 Z0, Z1					
Running parallelism of block surface C to surface A		See Table 2.14					
Running parallelism of block surface D to surface B			See Table 2.14				

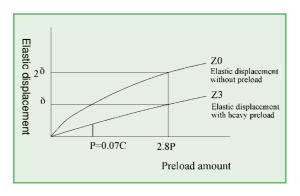
■ Table 2.12 Accuracy Standards

	Unit mm	LG - 45, 55				
	Item	Normal (C)	High (H)	Precision (P)		
Dimen	sion tolerance of height H	± 0.1	± 0.05	± 0.025		
Dime	nsion tolerance of width N	± 0.1	± 0.05	± 0.025		
Pair	Variation of height H	0.03	0.015	0.007		
- un	Variation of width N	0.03	0.02	0.01		
Pair vari	ation of height H (multi sets)	0.07	0.045	0.027		
Preload classes		ZF, Z0, Z1 Z0, Z1				
Running parallelism of block surface C to surface A		See Table 2.14				
Running paral	lelism of block surface D to surface B		See Table 2.14			

■ Table 2.13 Accuracy Standards

	Unit mm	LG - 65				
Item		Normal (C)	High (H)	Precision (P)		
Dimen	sion tolerance of height H	± 0.1	± 0.07	± 0.035		
Dime	nsion tolerance of width N	± 0.1	± 0.07	± 0.035		
Pair	Variation of height H	0.03	0.02	0.01		
	Variation of width N	0.03	0.025	0.015		
Pair vari	ation of height H (multi sets)	0.07	0.05	0.03		
Preload classes		ZF, Z0, Z1 Z0, Z1				
Running parallelism of block surface C to surface A		See Table 2.14				
Running parallelism of block surface D to surface B		See Table 2.14				

(3) Accuracy of Running Parallelism


■ Table 2.14 Accuracy of running parallelism

Rail Length (mm)	Accuracy (μm)						
rian Length (min)	С	Н	Р	SP	UP		
100以下	12	7	3	2	2		
100 ~ 200	14	9	4	2	2		
200 ~ 300	15	10	5	3	2		
300 ~ 500	17	12	6	3	2		
500 ~ 700	20	13	7	4	2		
700 ~ 900	22	15	8	5	3		
900 ~ 1,100	24	16	9	6	3		
1,100 ~ 1,500	26	18	11	7	4		
1,500 ~ 1,900	28	20	13	8	4		
1,900 ~ 2,500	31	22	15	10	5		
2,500 ~ 3,100	33	25	18	11	6		
3,100 ~ 3,600	36	27	20	14	7		
3,600 ~ 4,000	37	28	21	15	7		

2-1-6 Preload

(1) Definition

A preload can be applied to each guideway. Oversized balls are used. Generally, a linear motion guideway has a negative clearance between groove and balls in order to improve stiffness and maintain high precision. Figure shows that rigidity is doubled at the point where the load is $2\slash2$ times the preload and the deflection is one half.

(2) Preload classes

HIWIN offers six standard preloads for various applications and conditions.

■ Table 2.15 Preload Classes

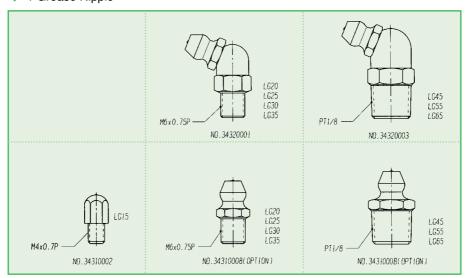
Class	Code	Preload	Accuracy	Examples of Application
Light Clearance	ZF	Clearance 4~10 μ m	С	Automation industry
Very Light Preload	Z0	0	C~UP	Transportation devices, auto-packing machines
Light Preload	Z1	0.02C	C~UP	X-Y axis for general industrial machines, welding machines, welders
Medium Preload	Z2	0.05C	H~UP	Z axis for general industrial machines, EDM, NC lathes, Precision X-Y tables, measuring equipment
Heavy Preload	Z3	0.07C	H~UP	Machining centers, grinding machines, NC lathes, horizontal and vertical milling machines, Z axis of machine tools
Super Heavy Preload	Z4	0.13C	H~UP	Heavy cutting machines

NOTE: The C in preload column means basic dynamic load rating.

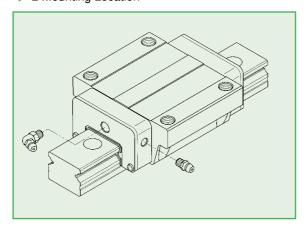
2-1-7 Stiffness

To confirm the impact on accuracy, Table 2.16 could be used to calculate the deflection of linear guideway.

$$\delta = \frac{P}{k} \mu \text{m}$$
 Equal. 2.1
$$\delta : \text{Deflection}$$
 P: Working load (kgf) k: Value of rigidity


■ Table 2.16 Value of rigidity

Туре	Size	Z0	Z1	Z2	Z3	Z4
турс	OIZE	kgf/µm	kgf/µm	kgf/µm	kgf/µm	kgf/µm
	LG 15C	19	24	28	30	-
	LG 20C	26	33	38	41	-
Heavy load	LG 25C	28	36	42	45	52
a S	LG 30C	35	45	52	56	65
6	LG 35C	41	52	60	65	74
ad	LG 45C	50	64	74	79	92
	LG 55C	58	74	86	92	106
	LG 65C	70	89	104	111	128
က္ခ	LG 20H	32	41	47	51	-
É	LG 25H	37	47	54	58	67
Super heavy	LG 30H	45	57	66	70	81
nea	LG 35H	51	65	76	81	94
\$	LG 45H	65	83	96	103	118
load	LG 55H	75	96	111	119	137
8	LG 65H	92	117	135	145	167


2-1-8 Lubrication

(1) Grease

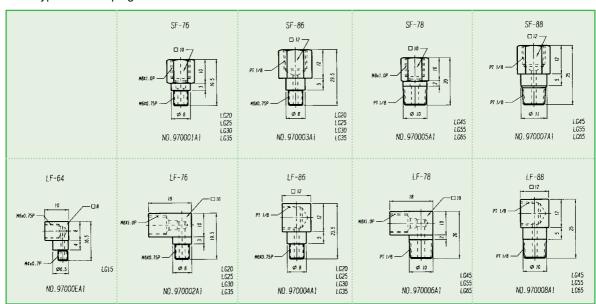
◆ 1 Grease Nipple

2 Mounting Location

The standard location of the grease fitting is at both ends of the block, but the nipple may optionally be mounted in the side of block. As for the lateral installation, we recommended that the nipple should be mounted at the non-reference side, otherwise please contact us. It is possible to carry out the lubrication by using the oil-piping joint.

3 The Oil Amount for a Block Full with Grease

■ Table 2.17 The Oil Amount for a Block Full with Grease


Size	Heavy load (cm³)	Super heavy load (cm³)	Size	Heavy load (cm³)	Super heavy load (cm³)
LG 15	1	-	LG 35	10	12
LG 20	2	3	LG 45	17	21
LG 25	5	6	LG 55	26	33
LG 30	7	8	LG 65	50	61

4 Frequency of Replenishment Replenishing the oil every 100km

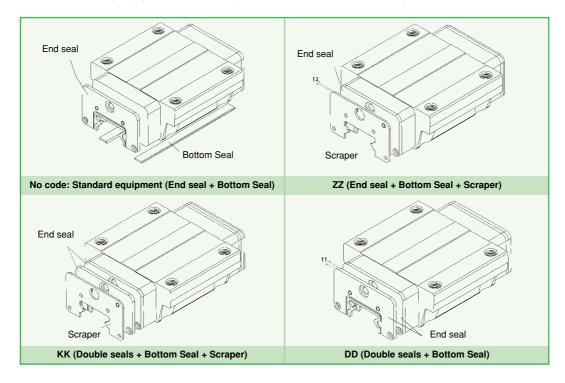
(2) Oil

The recommended viscosity of oil is about 30~150cst. If customers need to use the oil-type lubrication, please inform us, the block will not be prelubricated with grease before shipment.

◆ 1 Types of Oil Piping Joint.

2 Oil Feeding Rate

■ Table 2.18


Size	Feeding rate (cm³/hr)	Size
LG15	0.2	LG35
LG20	0.2	LG45
LG25	0.3	LG55
LG30	0.3	LG65

Size	Feeding rate (cm³/hr)
LG35	0.3
LG45	0.4
LG55	0.5
LG65	0.6

2-1-9 Dust Protection Equipment

(1) Code of equipment

If the following equipment is needed, please add the code followed by the model number.

(2) End seal and bottom seal

To prevent the life reduction from the groove surface damaged by iron chips or dust entering the block.

(3) Double seals

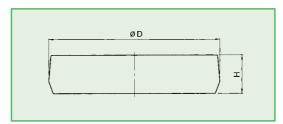
Enhancing the wiping effect, the foreign matters can be completely wiped out of block.

■ Table 2.19 Order number of End seal

Size	Part No.	Thickness(t1) mm	Size	
LG15	920001A1	1.8	LG35	
LG20	920002A1	2	LG45	
LG25	920003A1	2.5	LG55	
LG30	920004A1	2.8	LG65	

Size	Part No.	Thickness(t1) mm
LG35	920005A1	2.8
LG45	920006A1	2.5
LG55	920007A1	5
LG65	920008A1	5

(4) Scraper


The scraper has the ability of isolating the high-temp. iron chips and removing the big foreign matters.

■ Table 2.20 Order number of Scraper

Size	Part No.	Thickness(t1) mm	Size	Part No.	Thickness(t1) mm
LG15	980001A1	1.5	LG35	980005A1	1.5
LG20	980002A1	1.5	LG45	980006A1	1.5
LG25	980003A1	1.5	LG55	980007A1	1.7
LG30	980004A1	1.5	LG65	980008A1	1.7

(5) Caps for rail mounting holes

The caps are used to cover the mounting holes to prevent chips or other foreign matters from entering the holes. The caps will be enclosed in each rail packing

■ Table 2.21 Caps for rail mounting holes

Rail size	Bolt size	Part No.	Diameter(D)mm	Thickness(H)mm
LGR15	M4	950002C1	7.7	1.1
LGR20	M5	950003C1	9.7	2.2
LGR25	M6	950004C1	11.3	2.5
LGR30	M8	950005C1	14.3	3.3
LGR35	M8	950005C1	14.3	3.3
LGR45	M12	950007C1	20.3	4.6
LGR55	M14	950008A1	23.5	5.5
LGR65	M16	950009A1	26.6	5.5

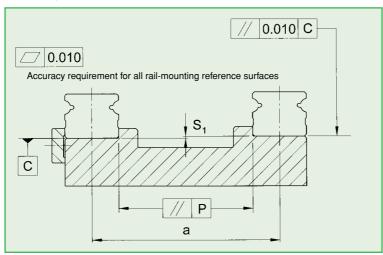
2-1-10 Friction

The maximum value of seal resistance per block are shown in the table.

■ Table 2.22 Seal resistance

Size	Resistance (kgf)	Size	Resistance (kgf)
LG 15	0.3	LG 35	0.8
LG 20	0.4	LG 45	1
LG 25	0.5	LG 55	1.2
LG 30	0.7	LG 65	1.5

2-1-11 The Accuracy Tolerance of Mounting Surface


(1) The accuracy tolerance of rail-mounting surface

Because of the Gothic contact design, the linear guideway is possessed with high rigidity. As for this characteristic, any unreasonable deviation will not only increase the friction resistance, but also reduce the life.

As long as following the accuracy requirements of mounting surface, the high accuracy and rigidity of linear motion guideway should be obtained without any difficulty.

In order to satisfy the needs of fast installation and smooth movement, HIWIN offers the normal clearance type of preload to customers for its high absorption ability for the deviation of mounting surface accuracy.

◆ 1 The parallelism tolerance of reference surface (P)

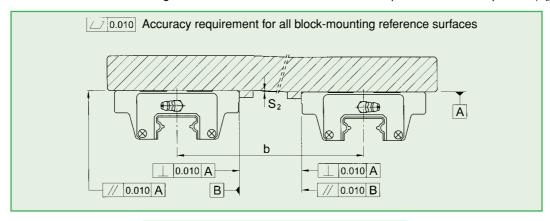
■ Table 2.23 Max. Parallelism Tolerance(P)

Unit: mm

Size	Preload classes													
Size	ZF	Z0	Z1	Z2	Z3	Z4								
LG 15	0.023	0.014	0.007	0.005	_									
LG 20	0.026	0.016	0.011	0.008	0.006	0.005								
LG 25	0.028	0.017	0.012	0.009	0.007	0.006								
LG 30	0.032	0.021	0.015	0.012	0.009	0.007								
LG 35	0.035	0.023	0.017	0.014	0.011	0.008								
LG 45	0.040	0.027	0.020	0.016	0.013	0.010								
LG 55	0.050 0.036		0.026	0.020	0.017	0.012								
LG 65	0.060	0.045	0.032	0.025	0.021	0.015								

◆ 2 The accuracy tolerance of reference surface height (S₁)

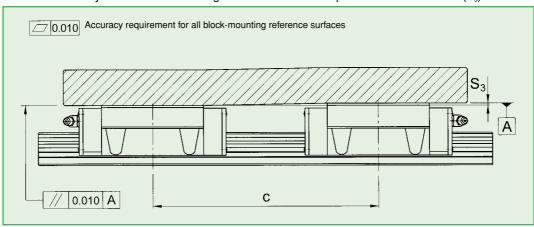
 $S_{\rm l} = a \times K \qquad \qquad {\rm Equal.~2.2}$ $S_{\rm l} : {\rm Max.~tolerance~of~height}$ a : distance between paired rails K : coefficient of tolerance of height


■ Table 2.24 Max. Tolerance of Height

Size			Preload	d classes		
Size	ZF	Z0	Z1	Z2	Z3	Z4
K	5.5 × 10 ⁻⁴	4.1 × 10 ⁻⁴	2.7 × 10 ⁻⁴	2.2 × 10 ⁻⁴	1.7 × 10 ⁻⁴	1.2 × 10 ⁻⁴

(2) The accuracy tolerance of block-mounting surface

♦ 1 The tolerance of the height of reference surface when two or more pieces are used in parallel (S₂)

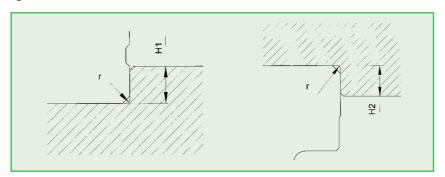


$$S_2 = b \times 4.2 \times 10^{-5}$$
 Equal. 2.3

 S_2 : Max. tolerance of height

b: distance between paired blocks

♦ 1 The accuracy tolerance of mounting reference surface for paired blocks at the rail (S₃)


$$S_3 = c \times 4.2 \times 10^{-5}$$
 Equal. 2.4

 S_3 : Max. tolerance of height

 $c\$: distance between paired blocks

2-1-12 Cautions for Installationfillets

(1) Shoulder heights and fillets

■ Table 2.25 Shoulder Heights and Fillets

Cino	Max. radius of fillets	Shoulder height of shoulder	height of the block				
Size	r (mm)	H1 (mm)	H2 (mm)				
LG15	0.3	3	4				
LG20	0.3	4	5				
LG25	0.5	5	5				
LG30	0.5	5	5				
LG35	0.5	6	6				
LG45	1	8	6				
LG55	1.5	10	10				
LG65	1.5	10	10				

(2) Tightening torque of bolts for installation

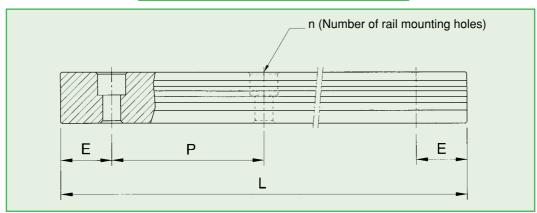
The improper tightening of bolts will influence the accuracy of Linear Guideway seriously, so that the following tightening torque for different sizes of bolt is recommended.

■ Table 2.26 Torque

Size	Bolt size	Torque (kgf-cm)	Size	Bolt size	Torque (kgf-cm)
LG 15	M4x0.7Px16L	40	LG 35	M8x1.25Px25L	310
LG 20	M5x0.8Px16L	90	LG 45	M12x1.75Px35L	1,200
LG 25	M6x1Px20L	140	LG 55	$M14 \times 2P \times 45L$	1,600
LG 30	M8x1.25Px25L	310	LG 65	$M16 \times 2P \times 50L$	2,000

2-1-13 Standard Length and Max. Length of Rail

HIWIN has offered the standard length of rails for customer needs. As for the non-standard E value, to avoid the unstable end part of rail, it is recommended the E value should not be over 1/2 of pitch (P). On the other hand, the E value should not be less than the Emin due to the break of mounting hole.


$$L = (n-1) \times P + 2 \times E$$
 Equal. 2.5
$$L : \text{Total length of rail (mm)}$$

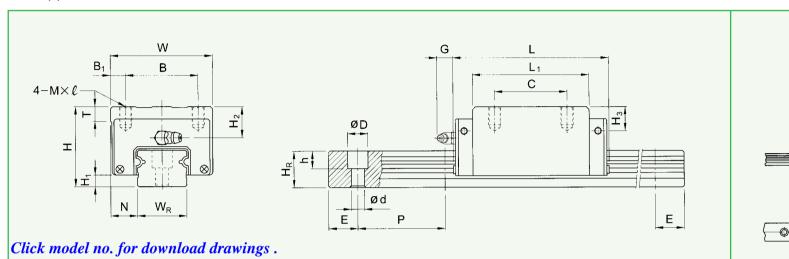
$$n : \text{Number of mounting holes}$$

$$P : \text{Distance between any two holes (mm)}$$

$$E : \text{Distance from the center of the last hole to}$$

$$\text{the edge (mm)}$$

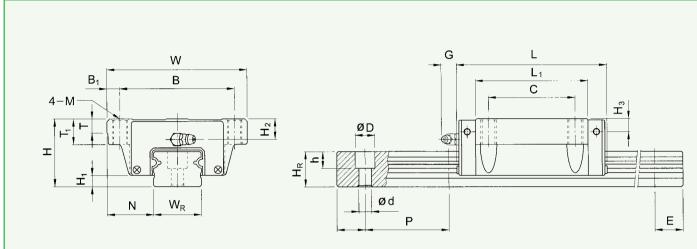
■ Table 2.27

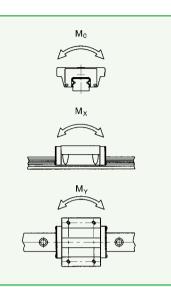

Item	LG15	LG20	LG25	LG30	LG35	LG45	LG55	LG65
	160(3)	220(4)	220(4)	280(4)	280(4)	570(6)	780(7)	1,270(9)
	220(4)	280(5)	280(5)	440(6)	440(6)	885(9)	1,020(9)	1,570(11)
	280(5)	340(6)	340(6)	600(8)	600(8)	1,200(12)	1,260(11)	2,020(14)
	340(6)	460(8)	460(8)	760(10)	760(10)	1,620(16)	1,500(13)	2,620(18)
Standard	460(8)	640(11)	640(11)	1,000(13)	1,000(13)	2,040(20)	1,980(17)	
Length	640(11)	820(14)	820(14)	1,640(21)	1,640(21)	2,460(24)	2,580(22)	
	820(14) 1,000(17		1,000(17)	2,040(26) 2,040(26)		2,985(29)	2,940(25)	
		1,240(21)	1,240(21)	2,520(32)	2,520(32)			
			1,600(27)	3,000(38)	3,000(38)			
Pitch(P)	60	60	60	80	80	105	120	150
Distance to End (E _s)	20	20	20	20	20	22.5	30	35
Min Distance to End(E _{min})	5	6	7	8	8	11	13	14
Max. Standard Length	1960(33)	2980(50)	4,000(67)	3,960(50)	3,960(50)	3,930(38)	3,540(30)	3,540(24)
Max. Length	2000	3000	4,000	4000	4000	4000	3,550	3550

Note:

- 1. Tolerance of E value for standard rail is 0.5~-0.5 mm. Tolerance of E value for butt-joint is 0~-0.3 mm.
- 2. Maximum standard length means the max. rail length with standard E value on both side

2-1-14 Dimensions for HIWIN LG Series

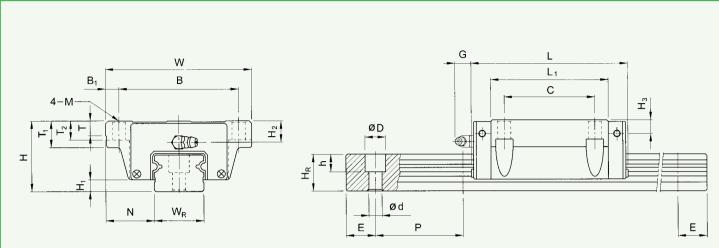

(1). LGH-CA / LGH-HA

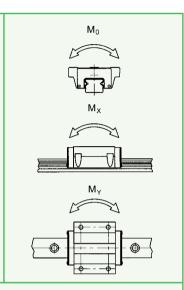


		mensi of					ı	Dimens	ions of	Block						Dimer	nsions	of R	ail		Mounting Bolt	Basic Dynamic	Basic Static	Static	Rated M	oment	We	ight
Model No.	A	Assembly (mm)			(mm)									(mm)							for Rail (mm)	Load Rating	Load Rating	Mo	Mx	My	Block (kg)	Rail (kg/m)
	Н	H₁	N	W	В	B ₁	С	L ₁	L	G	Mxℓ	Т	H ₂	WR	HR	D	h	d	Р	E		C (kgf)	C0 (kgf)	(kgf-m) (k	(Kgi-III)	(kgf-m)	(Ng)	(1.9/11.)
LGH 15CA	28	4.5	9.5	34	26	4	26	39.6	60.6	5.3	M4×5	6	8.5	15	14	7.5	5.3	4.5	60	20	M4×16	1,040	1,680	13.5	11.0	11.0	0.21	1.47
LGH 20CA		_	10		00		36	52.7	77.3	10	MEVO		7.1	00	4.5	٥.	0.5	•	00	00	MEVAG	1,650	2,670	28.1	22.8	22.8	0.37	2.00
LGH 20HA	30	5	12	44	32	6	50	67	91.6	12	M5×6	8	7.1	20	15	9.5	8.5	6	60	20	M5×16	2,100	3,400	35.7	35.9	35.9	0.46	2.08
LGH 25CA	⊣ ≀∩	6.5	12.5	48	35	6.5	35	57.6	85.6	12	M6×8	8	11.2	23	20	11	9	7	60	20	M6×20	2,410	3,880	46.6	37.2	37.2	0.59	3.15
LGH 25HA		6.5	12.5	40	33	6.5	50	76.6	104.6	12	IVIO×O	٥	11.2	23	20	11	9	′	60	20	WIO∧∠U	3,210	5,180	62.2	63.6	63.6	0.78	3.13
LGH 30CA	⊿ ⊿ ⊑	7	16	60	40	10	40	72	104.4	12	M8×10	8	10.5	28	23	14	12	9	80	20	M8×25	3,380	5,460	79.3	61.2	61.2	1.04	4.41
LGH 30HA		\ '	10	00	40	10		93	125.4	12	IVIO^10	0	10.5	20	23	14	12	Э	80	20	100/23	4,400	7,100	103.0	100.4	100.4	1.33	4.41
LGH 35CA		8	18	70	50	10	50		118.4	12	M8×12	10	15	34	25	14	12	9	80	20	M8×25	4,180	6,740	118.1	84.4	84.4	1.72	5.93
LGH 35HA		0	10	/ 0	30	10	72		142.2		IVIO^1Z	10	13	34	23	14	12	9	80	20	1010/23	5,430	8,770	153.5	138.4	138.4	2.24	3.93
LGH 45CA	⊣ 7∩	10	20.5	86	60	13	60		139.2	120	M10×17	15	21	45	32	20	17	1/	105	22.5	M12×35	6,020	9,710	223.5	141.3		3.16	10.01
LGH 45HA		10	20.5	00	00	13	80	133	172.6	12.9	IVI I U A I 7	13	21	45	32	20	17	14	103	22.5	W12/33	8,430	13,600	312.8			4.28	10.01
LGH 55CA	⊣ o∩	13	23.5	100	75	12.5		115.8		120	M12×18	17	22	53	40	23	20	16	120	30	M14×45	9,740	13,220	384.9	280.9	280.9	5.30	14.82
LGH 55HA 80	13	23.3	100	, 3	12.5	95	154.7	203.7	12.3	W112/10	17	~~	55	40	23	20	10	120	30	W114/43	11,810	18,510	489.8	442.7	442.7	6.40	14.02	
LGH 65CA	⊣റ∩	10	21 5	126	76	25	70	138.6	197.6	120	M16×20	25	20	63	48	26	22	18	150	35	M16×50	14,940	20,990	738.8	579.0		7.30	21.26
LGH 65HA		31.5	120	76	25	120	187.6	246.6	12.9	M16×20	25	20	03	40	20	22	10	130	33	W 10×30	18,290	27,290	1007.5	1040.8	1040.8	9.30	21.20	

Above listed dimensions of rail are dimensions of LGR-R (Bolt hole, mounting from above), and dimensions of LGR-T (Tapped hole, mounting from below) refer to Page 37.

(2). LGW-CA / LGW-HA

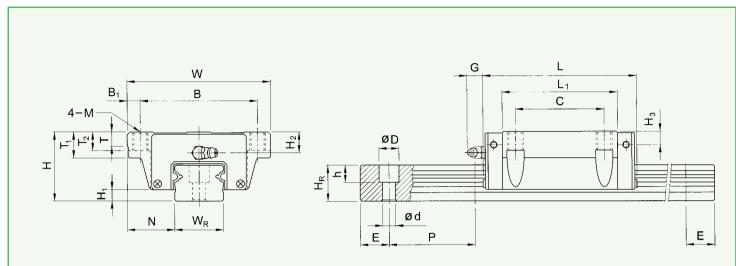


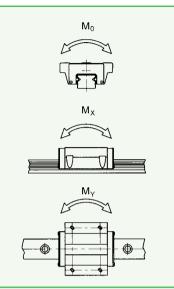

Click model no. for download drawings.

		nension of						Dimen	sions of	Block							Dim	ensid		of Ra	ail		Mounting Bolt	Basic Dynamic	Basic Static	Static	Rated M	oment	Wei	ight
Model No.		ssemb (mm)	•						(mm)									(n	nm)				for Rail (mm)	Load Rating	Load Rating	Mo	Mx	M _Y	Block (kg)	Rail (kg/m)
	Н	H1	N	W	В	Вı	С	L ₁	L	G	М	Т	T ₁	H ₂	Нз	WR	HR	D	h	d	Р	E		C (kgf)	C0 (kgf)	(kgf-m)	(kgf-m)	(kgi-iii)	(119)	(9,)
LGW 15CA	24	4.5	16	47	38	4.5	30	39.6	60.6	5.3	M5	6	9	4.5	3.6	15	14	7.5	5.3	4.5	60	20	M4x16	1,040	1,680	13.5	11.0	11.0	0.20	1.47
LGW 20CA	30	5	21.5	63	53	5	40	52.7	77.3	12	M6	8	10	8.4	71	20	15	9.5	9.5	6	60	20	MEVAC	1,650	2,670	28.1	22.8	22.8	0.46	0.00
LGW 20HA	30	3	21.5	03	33	3	40	67	91.6	12	IVIO	0	10	0.4	7.1	20	13	9.5	0.5	U	00	20	M5x16	2,100	3,400	35.7	35.9	35.9	0.58	2.08
LGW 25CA	36	6.5	23.5	70	57	6.5	45	57.6	85.6	12	M8	8	14	8.8	7	23	20	11	9	7	60	20	M6x20	2,410	3,880	46.6	37.2	37.2	0.64	3.15
LGW 25HA	30	0.5	20.5	70	37	0.5	45	76.6	104.6	12	IVIO		17	0.0	'	23	20	''	3	′	00	20	IVIOXZU	3,210	5,180	62.2	63.6	63.6	0.86	3.13
LGW 30CA	42	7	31	90	72	9	52	72	104.4	12	M10	8	16	11	7.5	28	23	14	12	9	80	20	M8x25	3,380	5,460	79.3	61.2	61.2	1.20	4.41
LGW 30HA	"-	,	0.				OL.	93	125.5		.vi i o		.0		7.0			• •		Ü	00		IVIOXZJ	4,400	7,100	103.0	100.4	100.4	1.56	4.41
LGW 35CA	48	8	33	100	82	9	62	82	118.4	12	M10	10	18	14.4	9	34	25	14	12	9	80	20	M8x25	4,180	6,740	118.1	84.4	84.4	1.78	5.93
LGW 35HA	10			100	02		02	105.8	142.2				.0			.				•			WIOXZ	5,430	8,770	153.5	138.4	138.4	2.34	3.33
LGW 45CA	60	10	37.5	120	100	10	80	99.6	139.2	12.9	M12	15	22	18.2	11	45	32	20	17	14	105	22.5	M12x35	6,020	9,710	223.5	141.3	141.3	3.13	10.01
LGW 45HA		10	07.0	120	100	10	00	133	172.6	12.5	IVIIZ	.5		10.2	٠.	75	02	20	''	17	100	22.5	WITZXXX	8,430	13,600	312.8	259.2	259.2	4.27	10.01
LGW 55CA	70	13	43.5	140	116	12	95	115.8	164.8	129	M14	17	26	12	12	53	40	23	20	16	120	30	M14x45	9,740	13,220	384.9	280.9	280.9	5.50	14.82
LGW 55HA	, 0	.5	75.5	1-40	. 10	12	55	154.7	203.7	12.3	14114	.,	20	12	12	55	0	20	20	.0	120	00	W114X43	11,810	18,510	489.8	442.7	442.7	6.70	14.02
LGW 65CA	90	19	53.5	170	142	14	110	138.6	197.6	12.9	M16	23	37	20	20	63	48	26	22	18	150	35	M16x50	14,940	20,990	738.8	579.0	579.0	8.50	21.26
LGW 65HA	30	1.5	00.0	' '	1-72	'-		187.6	246.6	12.3	141 10	20	01	20	20	00	70	20		.0	130	00	WITOXOU	18,290	27,290	1007.5	1040.8	1040.8	10.70	21.20

Above listed dimensions of rail are dimensions of LGR-R (Bolt hole, mounting from above), and dimensions of LGR-T (Tapped hole, mounting from below) refer to Page 37.

(3). LGW-CB / LGW-HB

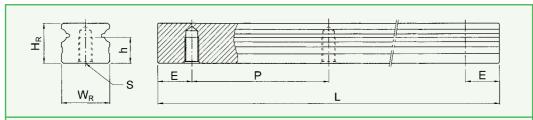



Click model no. for download drawings.

Marian		imensions of Dimensions of Block Assembly (mm)										Dim	ensi		of Ra	ıil		Mounting Bolt	Basic Dynamic	Basic Static	Static	Rated M	oment	Wei	ght						
Model No.		ssemb (mm)	•						(mm)										(n	nm)				for Rail (mm)	Load Rating C (kgf)	Load Rating C0 (kgf)	M₀ (kgf-m)	Mx (kgf-m)	My (kaf-m)	Block (kg)	Rail (kg/m)
	Н	Нı	N	W	В	Вı	С	L ₁	L	G	М	T	T 1	T ₂	H ₂	Нз	WR	HR	D	h	d	Р	Ε		C (kgi)	OU (kgi)	(1.9. 11.)	(itgi iii)	(Ngi iii)	(0,	
LGW 15CB	24	4.5	16	47	38	4.5	30	39.6	60.6	5.3	ø4.5	6	9	7	4.5	3.6	15	14	7.5	5.3	4.5	60	20	M4x—16	1,040	1,680	13.5	11.0	11.0	0.20	1.47
LGW 20CB	30	_	01 5	60	EO	-	40	52.7	77.3	12	~_	8	10	10	0.4	7.1	20	15	0 E	0 E	6	60	20	M5 40	1,650	2,670	28.1	22.8	22.8	0.46	0.00
LGW 20HB	30	5	21.5	63	53	5	40	67	91.6	12	ø6	0	10	10	8.4	/.1	20	15	9.5	6.5	6	60	20	M5x—16	2,100	3,400	35.7	35.9	35.9	0.58	2.08
LGW 25CB	36	6.5	23.5	70	57	6.5	45	57.6	85.6	12	ø7	8	14	10	8.8	7	23	20	11	9	7	60	20	Mov on	2,410	3,880	46.6	37.2	37.2	0.64	0.15
LGW 25HB	36	6.5	23.5	70	37	6.5	45	76.6	104.6	12	107	0	14	10	0.0	′	23	20	11	9	1	60	20	M6x—20	3,210	5,180	62.2	63.6	63.6	0.86	3.15
LGW 30CB	42	7	31	90	72	9	52	72	104.4	12	ø9	8	16	10	11	7 5	28	23	14	12	9	80	20	MO: OF	3,380	5,460	79.3	61.2	61.2	1.20	4 44
LGW 30HB	42	′	31	90	12	Э	52	93	125.5	12	99	0	10	10	11	7.5	20	23	14	12	9	80	20	M8x—25	4,400	7,100	103.0	100.4	100.4	1.56	4.41
LGW 35CB	48	8	33	100	82	9	62	82	118.4	12	ø9	10	10	10	14.4	_	34	25	14	10	9	80	20	MO: OF	4,180	6,740	118.1	84.4	84.4	1.78	F 00
LGW 35HB	40	0	33	100	02	Э	02	105.8	142.2	12	09	10	10	13	14.4	9	34	25	14	12	9	80	20	M8x—25	5,430	8,770	153.5	138.4	138.4	2.34	5.93
LGW 45CB	60	10	27.5	120	100	10	80	99.6	139.2	120	ø11	15	22	15	10 2	11	15	22	20	17	14	105	22.5	M12x—35	6,020	9,710	223.5	141.3	141.3	3.13	10.01
LGW 45HB	00	10	37.3	120	100	10	00	133	172.6	12.5	ווש		22	13	10.2	''	43	32	20	17	14	103	22.5	IVI 12X—35	8,430	13,600	312.8	259.2	259.2	4.27	10.01
LGW 55CB	70	13	12.5	140	116	12	95	115.8	164.8	120	ø14	17	26	17	12	12	53	40	23	20	16	120	30	M14v 45	9,740	13,220	384.9	280.9	280.9	5.50	14.00
LGW 55HB] ′	13	43.5	140	110	12	95	154.7	203.7	12.9	14 ש	'	20	17	12	12	55	40	23	20	10	120	30	M14x—45	11,810	18,510	489.8	442.7	442.7	6.70	14.82
LGW 65CB	90	10	E2 E	170	140	14	110	138.6	197.6	12.0	ø16	22	27	22	20	20	63	48	26	22	18	150	35	M40 50	14,940	20,990	738.8	579.0	579.0	8.50	04.00
LGW 65HB	90	19	53.5	170	142	14	110	187.6	246.6	12.9	סוש	23	3/	23	20	20	03	40	20	22	10	130	აა	M16x—50	18,290	27,290	1007.5	1040.8	1040.8	10.70	21.26

Above listed dimensions of rail are dimensions of LGR-R (Bolt hole, mounting from above), and dimensions of LGR-T (Tapped hole, mounting from below) refer to Page 37.

(4). LGW-CC / LGW-HC



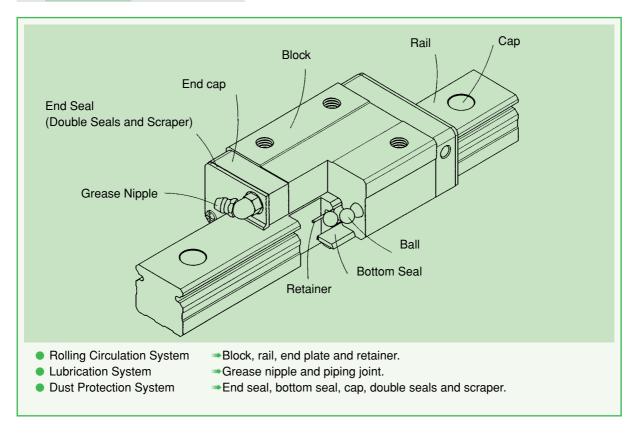
Click model no. for download drawings.

Model No.		nensio of						Dimens	sions of	Block								Dime			f Ra	il		Mounting Bolt for Rail	Basic Dynamic	Basic Static Load	Static	Rated M	oment	Wei	ght
Widder No.		semb (mm)	oly						(mm)										(11	ım)				(mm)	Load Rating C (kgf)	Rating C0 (kgf)	M₀ (kgf-m)	Mx (kgf-m)	My (kaf-m)	Block (kg)	Rail (kg/m)
	Н	H1	N	W	В	B ₁	С	L1	L	G	М	T	T1	T2	H2 I	۱ 3⊦	WR	HR	D	h	d	Р	Е		O (NgI)	00 (g.)	,	(3 /	()		
LGW 15CC	24	4.5	16	47	38	4.5	30	39.6	60.6	5.3	M5	6	9	7	4.5	3.6	15	14	7.5	5.3	4.5	60	20	M4x16	1,040	1,680	13.5	11.0	11.0	0.20	1.47
LGW 25CC	00	٥.	00.5	70	- 7	٥.	45	57.6	85.6	40	140					_	00	00			_	00	00	MC00	2,410	3,880	46.6	37.2	37.2	0.64	0.45
LGW 25HC	36	6.5	23.5	70	57	6.5	45	76.6	104.6	12	M8	8	14	10	8.8	7	23	20	11	9	1	60	20	M6x20	3,210	5,180	62.2	63.6	63.6	0.86	3.15
LGW 30CC	42	7	31	90	72	9	52	72	104.4	12	MAG					, _		00				00	00	M8x25	3,380	5,460	79.3	61.2	61.2	1.20	4.41
LGW 30HC	42	′	31	90	12	9	52	93	125.5	12	M10	8	16	10	11 /	7.5	28	23	14	12	9	80	20	IVIŏX∠S	4,400	7,100	103.0	100.4	100.4	1.56	4.41
LGW 35CC	48	8	33	100	82	9	62	82	118.4	12	M10	10	10	10 1	4.4		34	25	14	12		00	20	M8x25	4,180	6,740	118.1	84.4	84.4	1.78	5.93
LGW 35HC	40	0	33	100	02	9	02	105.8	142.2	12	IVITO	10	10	13 1	4.4	9	34	25	14	12	9	80	20	IVIOXZO	5,430	8,770	153.5	138.4	138.4	2.34	5.95
LGW 45CC	60	10	37.5	120	100	10	80	99.6	139.2	100	MAAO	1.5	20	15 1	0.0		45	20	20			105	00 E	M12x35	6,020	9,710	223.5	141.3	141.3	3.13	10.01
LGW 45HC	60	10	37.3	120	100	10	80	133	172.6	12.9	M12	15	22	15	8.2	''	45	32	20	17	14	105	22.5	WIIZX	8,430	13,600	312.8	259.2	259.2	4.27	10.01
LGW 55CC	70	13	43.5	140	116	12	95	115.8	164.8	100	N44.4	17	20	10	10		E0	40	22	20	10	100	20	M14x45	9,740	13,220	384.9	280.9	280.9	5.50	14.82
LGW 55HC	'0	13	45.5	140	110	12	90	154.7	203.7	12.9	M14	17	20	18	12	12	53	40	23	20	16	120	30	IVI 14X45	11,810	18,510	489.8	442.7	442.7	6.70	14.82
LGW 65CC	90	10	53.5	170	140	14	110	138.6	197.6	10.0	MAC	00	27	20	20 2	20	60	48	200	20	10	150	O.E.	M16x50	14,940	20,990	738.8	579.0	579.0	8.50	21.26
LGW 65HC	90	19	55.5	170	142	14	110	187.6	246.6	12.9	M16	23	3/	23	20	20	63	48	26	22	18	150	35	WI 10X5U	18,290	27,290	1007.5	1040.8	1040.8	10.70	21.26

Above listed dimensions of rail are dimensions of LGR-R (Bolt hole, mounting from above), and dimensions of LGR-T (Tapped hole, mounting from below) refer to Page 37.

(5). Dimensions for LGR-T (Rail Mounting from Below)

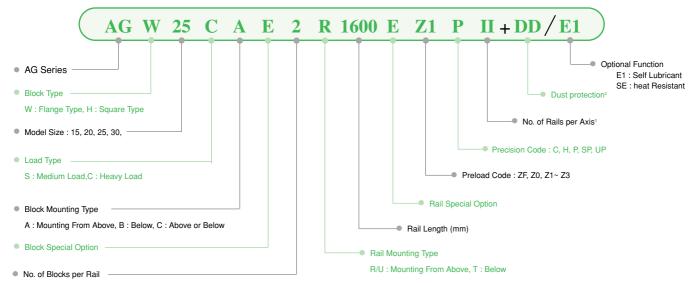
Model No.			Dimensions (mm)	of Rail			Weight (kg/m)
	W_{R}	H _R	S	h	Р	Е	(19/11)
LGR15T	15	14	M5x0.8P	7.5	60	20	1.59
LGR20T	20	15	M6x1P	8	60	20	2.26
LGR25T	23	20	M6x1P	12	60	20	3.41
LGR30T	28	23	M8x1.25P	15	80	20	4.76
LGR35T	34	25	M8x1.25P	16	80	20	6.31
LGR45T	45	32	M12x1.75P	20	105	22.5	10.70
LGR55T	53	40	M14x2P	24	120	30	15.52
LGR65T	63	48	M20x2.5P	30	150	35	21.82


2-2 AG Series

2-2-1 Features of the AG Series Linear Guideway

Because of enlarged balls and Gothic contact design, AG series is possessed with high stiffness, accuracy, and loading capacity. Besides these characteristics, the lower assembly height and the shorter length make the AG series more suitable for the high-speed automatic machines and the applications where space limit is considered.

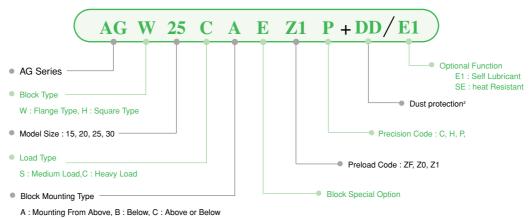
Moreover, the optimum design of circulating system makes the AG series moving smoothly and quietly even under the high-speed condition.


2-2-2. Construction of AG Series

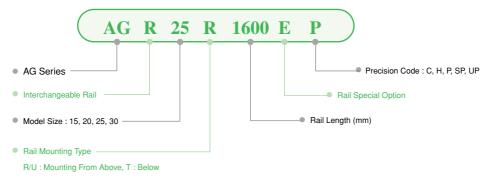
2-2-3. Model Number of AG Series

AG series guideway can be classified into non-interchangeable and interchangeable types. The size of two types is same as each other. The main difference between two types is that the interchangeable type of blocks and rails can be freely exchanged, and their accuracy can reach up to P class. Because of the restrictedly dimensional control, the interchangeable type linear guideway is a smart choice for customer when rails don't need to be paired for an axis. The model number of AG series contains the size, type, accuracy class, preload class, etc..

(1) Non-interchangeable type



Note:


- 1. The Roman numerals used to express the number of rails used in one axis. As for the single rail in an axis, it shows no symbol.
- 2. For dust protection, it is no symbol if it is standard(end seal and bottom seal).
- ZZ: End seal, bottom seal and scraper
- KK: Double seals, bottom seal and scraper.
- DD: Double seals and bottom seal

(2) Interchangeable type

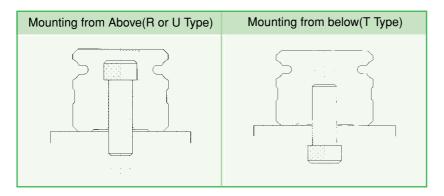
Model Number of LG Block

Model Number of LG Rail

2-2-4. Types

(1) Block types

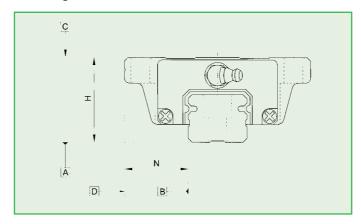
HIWIN offers flange and square two types of linear guideway. Because of the characteristics of low assembly height and larger mounting surface, it is especially good for the moment loading application


■ Table 2.28 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Application
Square	AGH-SA AGH-CA		24 ↓ 42	100 ↓ 4000	1.Automatic device 2.High speed transportation equipment 3.Precious measuring equipment 4.Semiconductor
Flores	AGW-SA AGW-CA		24 ↓ 42	100 ↓ 4000	equipment 5.Wood cutting machine
Flange	AGW-SB AGW-CB		24 ↓ 42	100 ↓ 4000	

(2) Rail types

Besides the standard top-mounting type, HIWIN also offers the bottom-mounting type of rails to customers.


■ Table 2.29 Rail Types

2-2-5 Accuracy Classes

The accuracy of AG series can be classified into normal(C), high(H), precision(P), super precision(SP), ultra precision(UP), five classes. Choosing the class by referencing the accuracy of applied equipment.

(1) Accuracy of non-interchangeable AG

■ Table 2.30 Accuracy Standards

	Unit mm			AG - 15, 20		
	Item	Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimens	ion tolerance of height H	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Dimen	sion tolerance of width N	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Pair	Variation of height H	0.02	0.01	0.006	0.004	0.003
I all	Variation of width N (Master Rail)	0.02	0.01	0.006	0.004	0.003
	Preload classes	ZF, Z0, Z1		Z0 ^	- Z3	
Running paralle	elism of block surface C to surface A			See Table 2.3	4	
Running paralle	elism of block surface D to surface B			See Table 2.3	4	

■ Table 2.31 Accuracy Standards

	Unit mm			AG - 25, 30,		
	Item	Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimen	sion tolerance of height H	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dimer	nsion tolerance of width N	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Pair	Variation of height H	0.02	0.015	0.007	0.005	0.003
	Variation of width N (Master Rail)	0.03	0.015	0.007	0.005	0.003
	Preload classes	ZF, Z0, Z1		Z0 ^	~ Z 3	
Running parall	elism of block surface C to surface A			See Table 2.3	4	
Running parall	elism of block surface D to surface B			See Table 2.3	4	

(2) Accuracy of interchangeable AG

■ Table 2.32 Accuracy Standards

	Unit mm		AG - 15, 20	
	Item	Normal (C)	High (H)	Precision (P)
Dimens	sion tolerance of height H	± 0.1	± 0.03	± 0.015
Dimen	sion tolerance of width N	± 0.1	± 0.03	± 0.015
Pair	Variation of height H	0.02	0.01	0.006
ı alı	Variation of width N	0.02	0.01	0.006
Pair varia	ation of height H (multi sets)	0.06	0.04	0.026
	Preload classes	ZF, Z0, Z1	Z0,	Z1
Running paralle	elism of block surface C to surface A		See Table 2.34	
Running paralle	elism of block surface D to surface B		See Table 2.34	

■ Table 2.33 Accuracy Standards

	Unit mm		AG - 25, 30	
	Item	Normal (C)	High (H)	Precision (P)
Dimer	nsion tolerance of height H	± 0.1	± 0.04	± 0.02
Dime	ension tolerance of width N	± 0.1	± 0.04	± 0.02
Pair	Variation of height H	0.02	0.015	0.007
ran	Variation of width N	0.03	0.015	0.007
Pair var	iation of height H (multi sets)	0.06	0.045	0.027
	Preload classes	ZF, Z0, Z1	Z0,	Z1
Running para	llelism of block surface C to surface A		See Table 2.34	
Running para	llelism of block surface D to surface B		See Table 2.34	

(3) Accuracy of Running Parallelism

■ Table 2.34 Accuracy of Running Parallelism

Rail Length (mm)		Ad	ccuracy (µm)		
rian zongur (mm)	С	Н	Р	SP	UP
100以下	12	7	3	2	2
100 ~ 200	14	9	4	2	2
200 ~ 300	15	10	5	3	2
300 ~ 500	17	12	6	3	2
500 ~ 700	20	13	7	4	2
700 ~ 900	22	15	8	5	3
900 ~ 1,100	24	16	9	6	3
1,100 ~ 1,500	26	18	11	7	4
1,500 ~ 1,900	28	20	13	8	4
1,900 ~ 2,500	31	22	15	10	5
2,500 ~ 3,100	33	25	18	11	6
3,100 ~ 3,600	36	27	20	14	7
3,600 ~ 4,000	37	28	21	15	7

2-2-6 Preload

AG series provides five standard preloads for various applications. Although increasing the preload is a good way to get higher stiffness, for avoiding the reduction of service life, we suggest the preload of AG 15,20 should not over medium class.

■ Table 2.35 Preload Classes

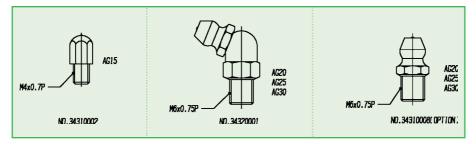
Class	Code	Preload	Accuracy
Light Clearance	ZF	Clearance 4~10 μ m	С
Very Light Preload	Z0	0	C~UP
Light Preload	Z1	0.02C	C~UP
Medium Preload	Z 2	0.05C	H~UP
Heavy Preload	Z 3	0.07C	H~UP

NOTE: The C in preload column means basic dynamic load rating.

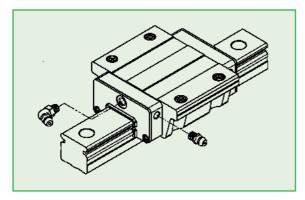
2-2-7 Stiffness

To confirm that whether the rigidity will affect the accuracy or not, the rigidity corresponding to the preload amount.

$$\delta = \frac{P}{k} \mu \text{m}$$
 Equal. 2.6
$$\delta : \text{Deflection}$$
 P: Working load (kgf) k: Value of rigidity


■ Table 2.36 Value of rigidity

Typo	Cino	Z0	Z1	Z2	Z3
Type	Size	kgf/µm	kgf/µm	kgf/µm	kgf/µm
	AG15S	10	13	15	16
Medium load	AG20S	11	14	16	17
Medium load	AG25S	14	17	20	22
	AG30S	16	20	23	24
	AG15C	16	20	24	25
Heavy load	AG20C	19	24	28	29
	AG25C	25	31	36	39
	AG30C	28	36	41	44


2-2-8 Lubrication

(1) Grease

Grease Nipple

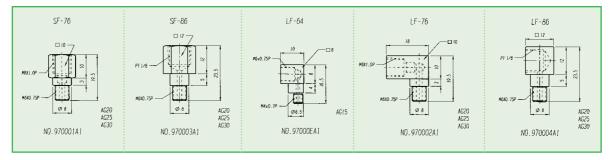
Mounting Location

The standard location of the grease fitting is at both ends of the block, but the nipple may optionally be mounted in the side of block. As for the lateral installation, we recommended that the nipple should be mounted at the non-reference side, otherwise please contact us. It is possible to carry out the lubrication by using the oilpiping joint.

- ◆ The Oil Amount for a Block Full with Grease
- Table 2.37 The Oil Amount for a Block Full with Grease

Size	Medium load (cm3)	Heavy load (cm3)	
AG15	0.5	0.6	
AG20	0.9	1.1	

Size	Medium load (cm3)	Heavy load (cm3)
AG25	1.7	2.1
AG30	3.8	4.4


Frequency of Replenishment

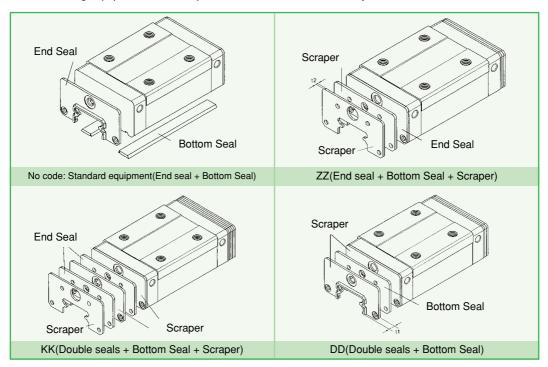
Replenishing the oil every 100km. •

(2) Oil

The recommended viscosity of oil is about 30~150cst. If customers need to use the oil-type lubrication, please inform us, the block will not be prelubricated with grease before shipment.

Types of Oil Piping Joint

Oil Feeding Rate


■ Table 2.38

Size	Feeding rate (cm³/hr)			
AG15	0.2			
AG20	0.2			
AG25	0.3			
AG30	0.3			

2-2-9 Dust Protection Equipment

(1) Code of equipment

If the following equipment needed, please add the code followed by model number.

(2) End seal and bottom seal

To prevent the life reduction due to the groove surface damaged by iron chips or dust entering the block

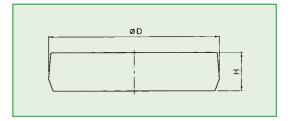
(3) Double seals

Enhancing the wiping effect, the foreign matters can be completely wiped out of block.

■ Table 2.39 Order number of End seal

Size	Part No.	Thickness (t1)mm
AG15	92000FA1	2.6
AG20	92000GA1	2.6
AG25	92000HA1	3
AG30	92000IA1	3.2

(4) Scraper


The scraper has the ability of isolating the high-temp. iron chips and removing the bigger foreign matters.

■ Table 2.40 Order number of Scraper

Size	Part No.	Thickness (t2)mm
AG15	980009A1	1.5
AG20	98000AA1	1.5
AG25	98000BA1	1.5
AG30	98000CA1	1.5

(5) Caps for rail mounting holes

The caps are used to cover the mounting holes to prevent chips or other foreign matters from entering the holes. The caps will be enclosed in each rail packing

■ Table 2.41 Caps for rail mounting holes

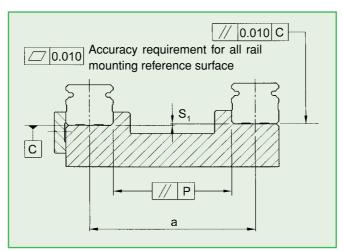
Model No.	Bolt Size	Part No.	Diameter(D)mm	Thickness(H)mm
AGR15R	M3	950001A1	6.3	1.2
AGR20R	M5	950003C1	9.7	2.2
AGR25R	M6	950004C1	11.3	2.5
AGR30R	M6	950004C1	11.3	2.5
AGR15U	M4	950002C1	7.7	1.1
AGR30U	M8	950005C1	14.3	3.3

2-2-10 Friction

The maximum value of seal resistance per block are shown in the table.

■ Table 2.42 Seal resistance

Size	Resistance(kgf)			
AG 15	0.1			
AG 25	0.2			
AG 20	0.2			
AG 30	0.5			


2-2-11 The Accuracy Tolerance of Mounting Surface

(1) The accuracy tolerance of rail-mounting surface

Because of the Gothic contact design, the linear guideway is possessed with high rigidity. As for this characteristic, any unreasonable deviation will not only increase the friction resistance, but also reduce the life.

As long as following the accuracy requirements of mounting surface, the high accuracy and rigidity of linear guideway should be obtained without any difficulty. In order to satisfy the needs of fast installation and smooth movement, HIWIN offers the normal clearance type of preload to customers for its high absorption ability for deviation of mounting surface accuracy.

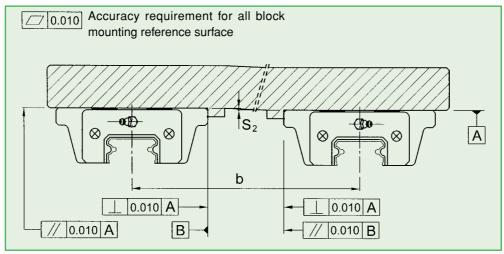
◆ The parallelism tolerance of reference surface (P)

Unit: mm

■ Table 2.43 Max. Parallelism Tolerance(P)

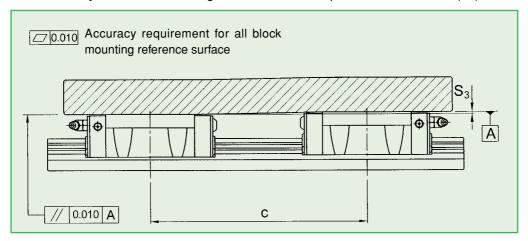
Size	Preload classes				
Size	ZF	Z0	Z1	Z2	Z3
AG 15	0.030	0.020	0.016	0.013	0.010
AG 20	0.035	0.025	0.020	0.017	0.015
AG 25	0.040	0.030	0.023	0.020	0.018
AG 30	0.045	0.034	0.028	0.025	0.020

◆ The accuracy tolerance of reference surface height (S1)


$$S_{\rm l} = a \times K$$
 Equal. 2.7
$$S_{\rm l} : {\rm Max.\ tolerance\ of\ height}$$
 a : distance between paired rails K : coefficient of tolerance of height

■ Table 2.44 Max. Tolerance of Height

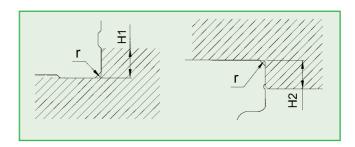
Size	Preload classes				
Size	ZF	Z0	Z1	Z2	Z3
K	6.6 × 10 ⁻⁴	4.9 × 10 ⁻⁴	3.2 × 10 ⁻⁴	2.6 × 10 ⁻⁴	2 × 10 ⁻⁴


(2) The accuracy tolerance of block-mounting surface

♦ the tolerance of the height of reference surface when two or more pieces are used in parallel (S2)

$$S_2 = b \times 5 \times 10^{-5}$$
 Equal. 2.8
 S_2 : Max. tolerance of height b : distance between paired blocks

• the accuracy tolerance of mounting reference surface for paired blocks at the rail (S3)


$$S_3 = c \times 5 \times 10^{-5}$$
 Equal. 2.9
 S_3 : Max. tolerance of height c : distance between paired blocks

2-2-12 Cautions for Installation

(1) Shoulder heights and fillets

The improper shoulder heights and fillets of mounting surfaces will cause the deviation of accuracy and the interference with the chamfered part of the rail or block.

As long as following the recommended shoulder heights and fillets, the accuracy problem of installation should be eliminated.

■ Table 2.45 Shoulder Heights and Fillets

Size	Max. radius of fillets r (mm)	Shoulder height of the rail H1 (mm)	Shoulder height of the block H2 (mm)
AG15	0.5	3	4
AG20	0.5	4	5
AG25	1	5	6
AG30	1	6	6

(2) Tightening torque of bolts for installation

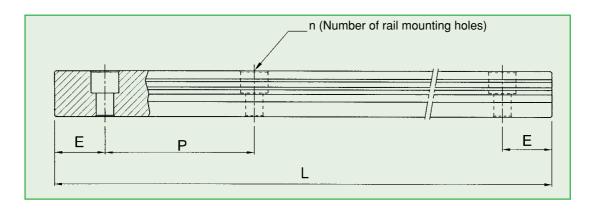
The improper tightening of bolts will influence the accuracy of Linear Guideway seriously, so that the following tightening torque for different sizes of bolt is recommended.

■ Table 2.46 Torque

Size	Bolt size	Torque (kgf-cm)
AG 15	M3x0.5Px16L	19
AG 20	M5x0.8Px16L	90
AG 25	M6x1Px20L	140
AG 30	M6x1Px25L	140

2-2-13 Standard Length and Max. Length of Rail

HIWIN has offered the standard length of rails for customer needs. As for the non-standard E value, to avoid the unstable end part of rail, it is recommended the E value should not be over 1/2 of pitch (P). On the other hand, the E value should not be less than the Emin due to the break of mounting hole.


$$L = (n-1) \times P + 2 \times E \hspace{1cm} \text{Equal. 2.10}$$

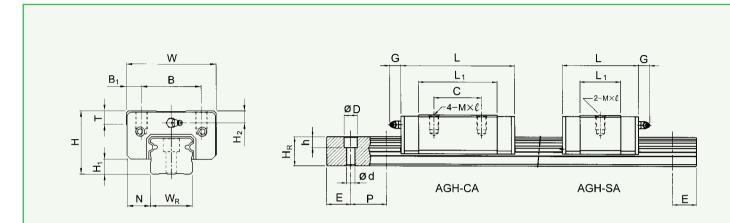
L: Total length of rail

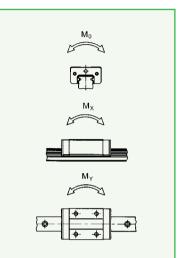
n: Number of mounting holes

P: Distance between any two holes

E : Distance from the center of the last hole to the edge

■ Table 2.47

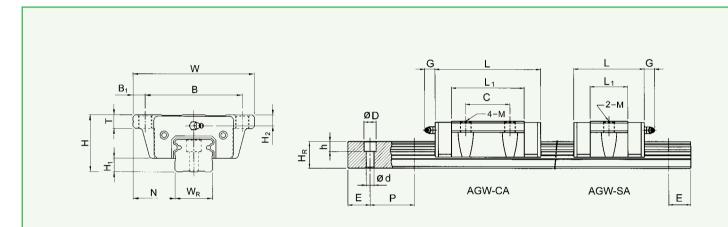

Item	AGR15	AGR20	AGR25	AGR30
	160 (3)	220 (4)	220 (4)	280 (4)
	220 (4)	280 (5)	280 (5)	440 (6)
	280 (5)	340 (6)	340 (6)	600 (8)
0	340 (6)	460 (8)	460 (8)	760 (10)
Standard Length	460 (8)	640 (11)	640 (11)	1,000 (13)
L(n)	640 (11)	820 (14)	820 (14)	1,640 (21)
	820 (14)	1,000 (17)	1,000 (17)	2,040 (26)
		1,240 (21)	1,240 (21)	2,520 (32)
			1,600 (27)	3,000 (38)
Pitch(P)	60	60	60	80
Distance to End (Es)	20	20	20	20
Min Distance to End (Emin)	5	6	7	8
Max. Standard Length	1960(33)	2980(50)	4000(67)	3960(50)
Max. Length	2000	3000	4000	4000

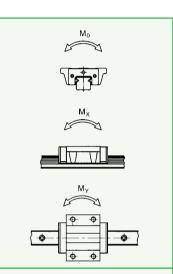

Note:

- 1. Tolerance of E value for standard rail is 0.5~-0.5 mm. Tolerance of E value for butt-joint is 0~-0.3 mm.
- 2. Maximum standard length means the max. rail length with standard E value on both side.

2-2-14 Dimensions for HIWIN AG Series

(1). AGH-SA / AGH-CA

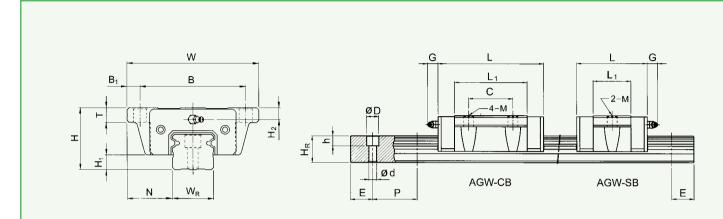


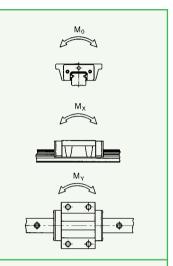

Click model no. for download drawings.

Model No.	As	of semb (mm)					[Dimensi	ions of (mm)	Block					I	Dimer	nsions (mm)		Rail		Mounting Bolt for Rail (mm)	Basic Dynamic Load Rating	Basic Static Load Rating	Mo	Mx	My	Block (kg)	Rail (kg/m)						
	Н	Н₁	N	W	В	Bı	С	L ₁	L	G	Mxℓ	Т	H2	WR	HR	D	h	d	Р	Е		C (kgf)	C0 (kgf)	(kgf-m)	(kgf-m)	(kgt-m)	(119)	(Ng/III)						
AGH15SA	24	5	9.5	24	26	4	-	22.8	41	5.7	M4X7	6	5.5	15	13.5	6	4.5	2 5	60	20	M3X16	440	590	4.8	2.3	2.3	0.12	1.43						
AGH15CA	24	5	9.5	34	34 26 4	26	38.7	56.9	5.7	IVI4A/		5.5	15 13.	13.5	0	4.5	3.5	60	20	IVISATO	640	1,010	8.3	6.3	6.3	0.17	1.43							
AGH20SA	28	6	11	42	22	32	32	32	32	5	-	26.2	48	12	M5X8	7.5	6	20	15.5	9.5	8.5	6	60	20	M5X16	650	920	10.1	4.5	4.5	0.2	2.16		
AGH20CA	20	U	''	42	32	5	32	44.1	65.9	12	IVIOAO	7.5	U	20	13.3	9.5	0.5	U	00	20	WIJX10	970	1,450	15.9	10.4	10.4	0.29	2.10						
AGH25SA	33	7	12.5	48	35	6.5	-	34.5	58.7	12	M6X9	8	7	23	18.5	11	9	7	60	20	M6X20	1,080	1,330	16.7	7.8	7.8	0.34	2.95						
AGH25CA	33	'	12.5	40	33	0.5	35	58.3	82.5	12	MOVE	0	,	23	10.5	'''	9	1	00	20	IVIOAZO	1,550	2,290	28.7	21.1	21.1	0.51	2.93						
AGH30SA	42	10	16	60	60 40 10	60 40 10	30 40	60 40	30 40	20 40	10	10	-	36.6	66.4	12	MgY12	a	Ω	28	24	11	9	7	80	20	M6X25	1,550	2,030	30.8	14.0	14.0	0.57	4.76
AGH30CA	72	10	10	00			40						9 8 28 24 11 9 7 80 20 M6			IVIUAZJ	2,470	3,390	51.3	35.5	35.5	0.88	4.70											

Above listed dimensions of rail are dimensions of AGR-R (Bolt hole, mounting from above), dimensions of AGR-U (Large bolt hole, mounting from above) refer to Page 53, and dimensions of AGR-T (Tapped hole, mounting from below) refer to Page 53.

(2). AGW-SA / AGW-CA

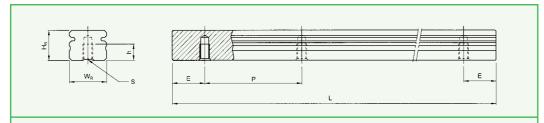



Click model no. for download drawings.

	Din	nension of	ons				ſ	Dimens	ions of	Block					D	imens	sions	of Ra	ail		Mounting Basic Dynamic	Basic Static	Static Rated Moment		oment	Weight		
Model No.		ssemb (mm)	•						(mm)								(mm)				for Rail	Load Rating	Load Rating	Mo	Mx	Мч	Block	Rail
	Н	Н1	N	W	В	Bı	С	L ₁	L	G	М	Т	H2	WR	HR	D	h	d	Р	Е	(mm)	C (kgf)	C ₀ (kgf)	(kgf-m)	(kgf-m)	(kgf-m)	(kg)	(kg/m)
AGW15SA	24	5	18.5	52	41	5.5	-	22.8	41	5.7	M5	7	5.5	15	13.5	6	4.5	3.5	60	20	M3X16	440	590	4.8	2.3	2.3	0.15	1.43
AGW15CA	24	3	10.5	32	41	3.3	26	38.7	56.9	5.7	IVIO	′	5.5	13	13.3	O	4.5	3.3	00	20	IVIOXIO	640	1,010	8.3	6.3	6.3	0.23	1.43
AGW20SA	28	6	19.5	59	49	5	-	26.2	48	12	M6	9	6	20	15.5	9.5	8.5	6	60	20	M5X16	650	920	10.1	4.5	4.5	0.24	2.16
AGW20CA	20	0	19.5	39	49	3	32	44.1	65.9	12	IVIO	Э	0	20	13.3	9.5	0.5	0	00	20	IVIOXIO	970	1,450	15.9	10.4	10.4	0.36	2.10
AGW25SA	22	7	25	73	60	6.5	-	34.5	58.7	12	M8	10	7	23	18.5	11	9	7	60	20	M6X20	1,080	1,330	16.7	7.8	7.8	0.44	2.95
AGW25CA	33	′	25	13	00	0.5	35	58.3	82.5	12	IVIO	10	'	23	10.5	11	9	′	00	20	IVIOAZU	1,550	2,290	28.7	21.1	21.1	0.68	2.93
AGW30SA	42	10	31	90	72	9	-	36.6	66.4	12	M10	10	8	28	24	44	9	7	80	20	M6X25	1,550	2,030	30.8	14.0	14.0	0.72	4.76
AGW30CA	42	10	اد	90	12	9	40	65.2	95	12	IVITO	10	o	20	24	11	9	1	00	20	IVIOAZO	2,470	3,390	51.3	35.5	35.5	1.16	4.76

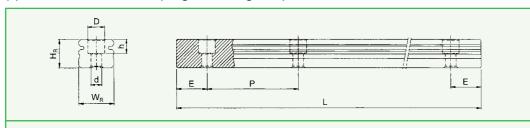
Above listed dimensions of rail are dimensions of AGR-R (Bolt hole, mounting from above), dimensions of AGR-U (Large bolt hole, mounting from above) refer to Page 53, and dimensions of AGR-T (Tapped hole, mounting from below) refer to Page 53.

(3). AGW-SB / AGW-CB



Click model no. for download drawings.

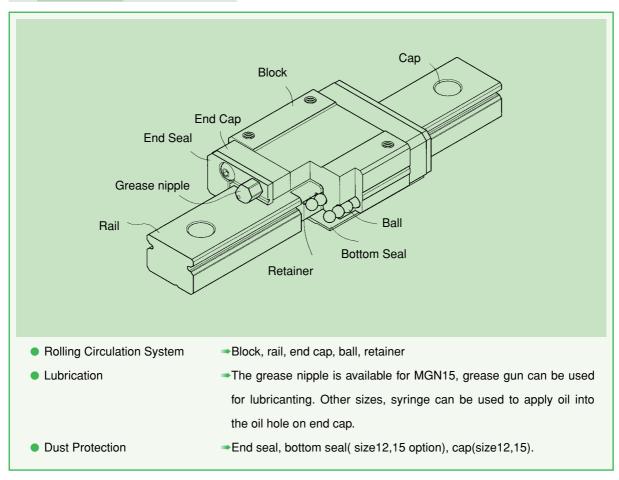
Model No.		nension of					С	Dimensi	ions of (mm)	Block					С	imens	sions (mm)	of Ra	ail		Mounting Bolt	Basic Dynamic Load	Basic Static Load	Static	Rated Mo	oment	Wei	
	Н	(mm)	N	W	В	Bı	С	L ₁	L	G	М	Т	H2	WR	HR	D	h	d	Р	Е	for Rail (mm)	Rating C (kgf)	Rating C₀ (kgf)	M₀ (kgf-m)	Mx (kgf-m)	M _Y (kgf-m)	Block (kg)	Rail (kg/m)
AGW15SB	⊣ ')/I	5	18.5	52	41 5.5	5.5	-	22.8	41	5.7	⊎ 4.5	7	5.5	15	13.5	6	4.5	2.5	60	20	M3X16	440	590	4.8	2.3	2.3	0.15	1.43
AGW15CB			10.0	02	71	0.0	26	38.7	56.9	3.7	Ψ 4.5	′	5.5	13	13.3	O	4.5	3.3	00	20	WOXTO	640	1,010	8.3	6.3	6.3	0.23	1.40
AGW20SB		6	19.5	59	49	5	-	26.2	48	12	√ 5.5	9	6	20	15.5	0.5	0 5	6	60	20	M5X16	650	920	10.1	4.5	4.5	0.24	2.16
AGW20CB	-	0	13.5	33	43		32	44.1	65.9	12	ψ 5.5	9	0	20	15.5	9.5	0.5	0	60	20	IVIOXIO	970	1,450	15.9	10.4	10.4	0.36	2.10
AGW25SB		7	25	73	60	6.5	-	34.5	58.7	10	. 7	40	_		10.5	4.4		_	00		M6X20	1,080	1,330	16.7	7.8	7.8	0.44	2.95
AGW25CB	33	′	23	73	00	0.5	35	58.3	82.5	12	ψ7	10	/	23	18.5	11	9	'	60	20	IVIOAZU	1,550	2,290	28.7	21.1	21.1	0.68	2.93
AGW30SB		10	31	90	72	9	-	36.6	66.4	12	J. O	10	8	28	24	11	0	7	80	20	M6X25	1,550	2,030	30.8	14.0	14.0	0.72	4.76
AGW30CB	72	10	01	50	12		40	65.2	95	12	ψ9	10	0	28	24	11	9	/	00	20	IVIOAZO	2,470	3,390	51.3	35.5	35.5	1.16	4.70


Above listed dimensions of rail are dimensions of AGR-R (Bolt hole, mounting from above), dimensions of AGR-U (Large bolt hole, mounting from above) refer to Page 53, and dimensions of AGR-T (Tapped hole, mounting from below) refer to Page 53.

(4). Dimensions for AGR-T (Rail Mounting from Below)

Model No.			Dimensions (mm)	of Rail			Weight Rail
	W _R	H _R	S	h	Р	Е	(kg/m)
AGR15T	15	13.5	M5x0.8P	7	60	20	1.44
AGR20T	20	15.5	M6x1P	9	60	20	2.23
AGR25T	23	18.5	M6x1P	10	60	20	3.06
AGR30T	28	4.83					

(5). Dimensions for AGR-U (Large Mounting Hole)

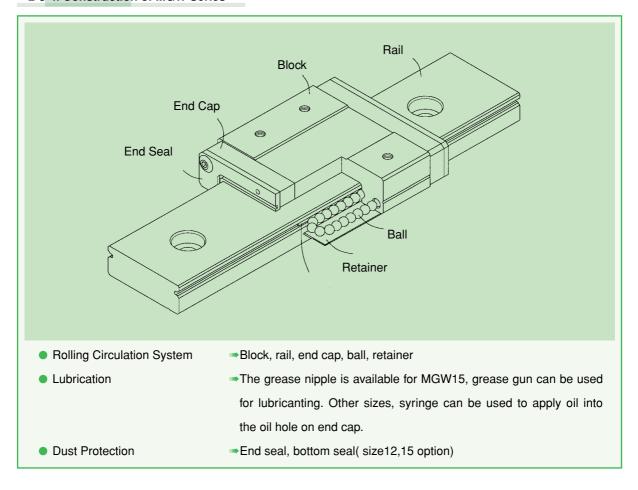

Model No.	Mounting Bolt for Rail			Dime	nsions o	of Rail			Weight Rail				
	(mm)	W _R	H _R	S	h	d	Р	E	(kg/m)				
AGR15U	M4x16	15	13.5	7.5	5.3	4.5	60	20	1.41				
AGR30U	M8x25	28	24	14	12	9	80	20	4.65				

2-3 Miniature MGN/MGW Series

2-3-1. Features of MGN Series

- 1. Tiny and light weight, suitable for miniature equipment.
- 2. All material are special grade of stainless steel for anti-corrosion ability. Size 9,12 also provide alloy steel type.
- 3. Gothic arch contact design has high rigidity and accuracy characteristic in all directions.
- 4. Steel balls are constrained by miniature retainer so without loosing balls when remove the block away from the rail.
- 5. Interchangeable type are available with certain precision class.

2-3-2. Construction of MGN Series



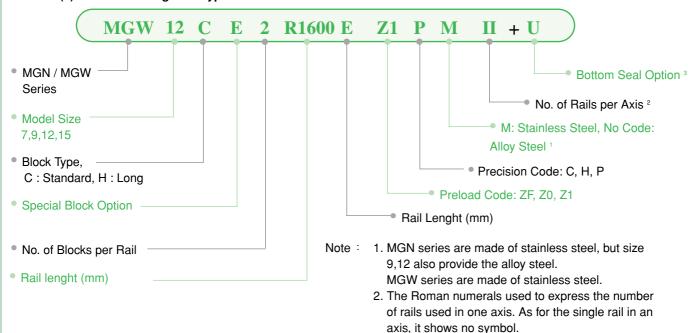
2-3-3. Feature of MGW Series

The design feature of wide type miniature guideway-MGW:

- 1. The design of enlarged width has increased the capacity of moment load.
- 2. Gothic arch contact design has high rigidity characteristic in all directions.
- 3. Steel balls are constrained by miniature retainer so without loosing balls when removing the block away from the rail.
- 4. All metal components are made of stainless steel for anti-corrosion ability.

2-3-4. Construction of MGW Series

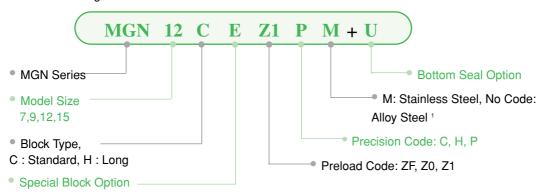
2-3-5 Application

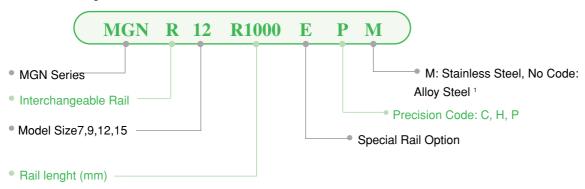

MGN/MGW series can be used in many fields, such like:

Semiconductor equipment, PCB assembly equipment, medical equipment, robots, measuring equipment, office automation equipment, and other miniature sliding mechanism.

2-3-6 Model Number of MGN/MGW Series

Linear guideway can be classified into non-interchangeable and interchangeable types. The size of two types is same as each other. The main difference between two types is that the interchangeable type of blocks and rails can be freely exchanged, and their accuracy can reach up to P class. Because of the strictly dimensional control, the interchangeable type linear guideway is a smart choice for customer when rails don't need to be paired for an axis. The model number contains the size, type, accuracy class, preload class, etc..

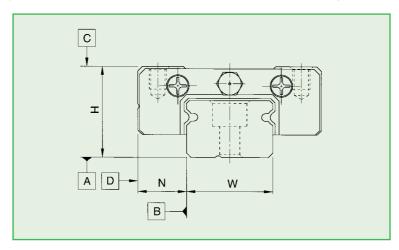

(1) Non-interchangeable type


3. Size of MGN/MGW12,15providethe bottom seal.

(2) Interchangeable type

Interchangeable Block

Interchangeable Rail



2-3-7 Accuracy Standards

The accuracy of MGN/MGW series can be classified into normal(C), high(H), precision(P) three classes. Choosing the class by referencing the accuracy of applied equipment.

(1) 1. Non-interchangeable

The accuracy values are the means of measurements taken at the central prat of each block.

■ Table 2.48 Accuracy standard of non-interchangeable type

Unit:mm

Item	Normal (C)	High (H)	Precision (P)			
Dimension tolerance of height H	±0.04	±0.02	±0.01			
Dimension tolerance of width N	±0.04	±0.025	±0.015			
Pair variation of height H	0.03	0.015	0.007			
Pair variation of width N(Master Rail)	0.03	0.02	0.01			
Running parallelism of block surface C to surface A	According to Table 2.50					
Running parallelism of block surface D to surface B	Ac	cording to Table	2.50			

(2) Interchangeable

The multi sets pair variation of height has few difference between the interchangeable type and non-interchangeable type.

■ Table 2.49 Accuracy standard of interchangeable type

Unit:mm

	Item	Normal (C)	High (H)	Precision (P)	
Dim	nension tolerance of height H	±0.04	±0.02	±0.01	
Din	nension tolerance of width N	±0.04	±0.025	±0.015	
0== 0=4	Pair variation of height H	0.03	0.015	0.007	
One Set	Pair variation of width N	0.03	0.02	0.01	
Pair	variation of height H (Multi Sets)	0.07	0.04	0.02	
Running	parallelism of block surface C to surface A	According to Table 2.50			
Running	parallelism of block surface D to surface B	Acco	rding to Table	2.50	

(3). Accuracy of running parallelism

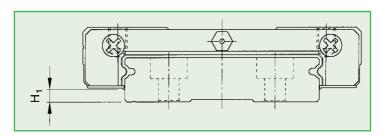
The running parallelism C to A and D to B are with relation to rail length

■ Table 2.50 Accuracy of Running Parallelism

Rail Length mm		Accuracy	
Trail Longitt IIIII	С	Н	Р
50以下	12	6	2
50~80	13	7	3
80~125	14	8	4
125~200	15	9	4
200~250	16	10	5
250~315	17	11	5
315~400	18	11	6
400~500	19	12	6
500~630	20	13	7
630~800	22	14	8
800~1000	23	16	9
1000~1200	25	18	11

2-3-8 Preload

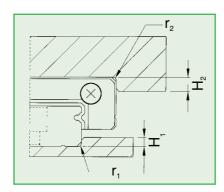
MGN/MGW series provides three preload levels for various applications.


■ Table 2.51 Preload Classes

Class	Code	Preload	Accuracy
Light clearance	ZF	Clearance4~10 µm	С
Very Light Preload	Z0	0	C~P
Light	Z1	0.02C	C~P

Note: The C in preload column means basic dynamic load rating.

2-3-9 Dust Protection Equipment

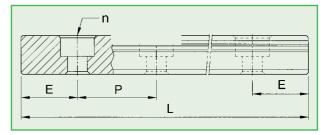

End seals are standard equipment which fixed on both side of block to prevent the accuracy and life reduction due to dust enter the block. Bottom seals are fixed under the skirt portion of block to prevent dust entering. Customer can order bottom seals by add the mark "+U" follow by the model number. Size 12,15 provides bottom seals for option, but size 7,9 doesn't provides because of the space limit of H1. If the Linear Guideway is equipped with bottom seal, the lateral mounting surface of rail must not exceed H1.

■ Table 2.52

Size	Bottom seal	H1 mm
MGN7	-	-
MGN9	-	-
MGN12	•	2
MGN15	•	3
MGW 7	-	-
MGW 9	-	-
MGW12	•	2.6
MGW15	•	2.6

2-3-10 Shoulder Heights and Fillets

■ Table 2.53 Shoulder heights and fillets


SIZE	Max. ra	dius of fillets	Shoulder height H1 (mm)	Shoulder height H2 (mm)
OIZL	R ₁ (mm)	R2(mm)	Shoulder height (11 (11111)	onodidor noight [1- (mm)
MGN7	0.2	0.2	1.2	3
MGN9	0.2	0.3	1.7	3
MGN12	0.3	0.4	1.7	4
MGN15	0.5	0.5	2.5	5
MGW 7	0.2	0.2	1.7	3
MGW 9	0.3	0.3	2.5	3
MGW 12	0.4	0.4	3	4
MGW 15	0.4	8.0	3	5

2-3-11 Standard Length and Maximum Length of Linear Guideways

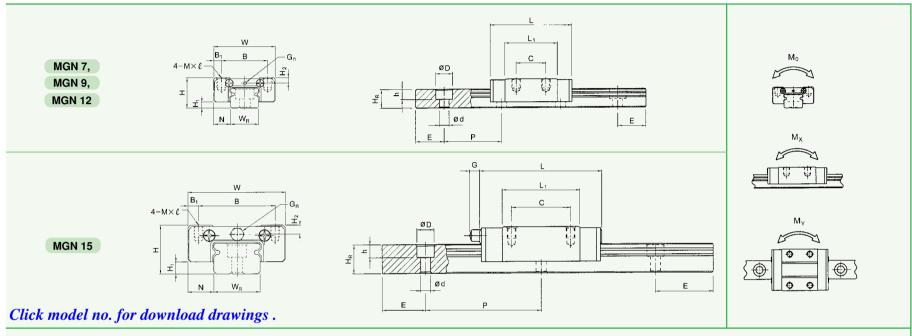
HIWIN has offered the standard length of rails for customer needs. As for the non-standard E value, to avoid the unstable end part of rail, it is recommended the E value should not be over 1/2 of pitch (P). On the other hand, the E value should not be less than the Emin due to the break of mounting hole.

$$L = (n-1) \times P + 2 \times E$$
 ——— Equal. 2.11

- L: Total length of rail (mm)
- n: Number of mounting holes
- P: Distance between any two holes (mm)
- ${\it E}$: Distance from the center of the last hole to the edge (mm)

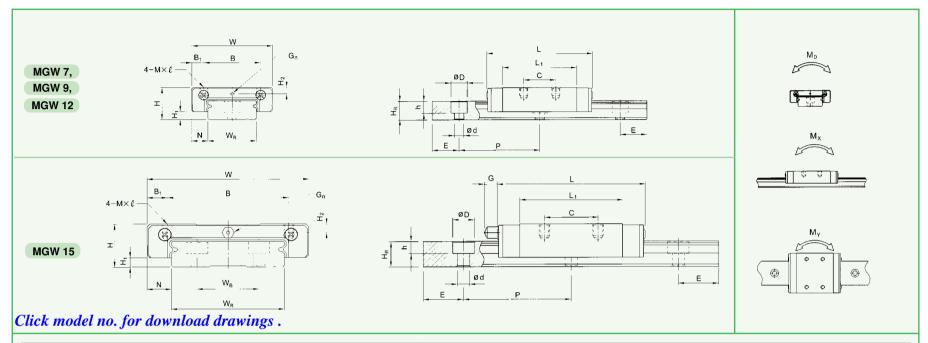
■ Table 2.54 Rail length

Unit: mm


Item	MGNR 7M	MGNR 9M	MGNR 9	MGNR 12M	MGNR 12	MGNR 15M	MGWR 7M	MGWR 9M	MGWR 12M	MGWR 15M
	40 (3)	5	5 (3)	70	(3)	70 (2)	80 (3)	80 (3)	110 (3)	110 (3)
	55 (4)	7	5(4)	95	5 (4)	110 (3)	110 (4)	110 (4)	150 (4)	150 (4)
	70 (5)	9	5 (5)	120	(5)	150 (4)	140 (5)	140 (5)	190 (5)	190 (5)
	85 (6)	11	5 (6)	145	5 (6)	190 (5)	170 (6)	170 (6)	230 (6)	230 (6)
	100 (7)	13	5 (7)	170	(7)	230 (6)	200 (7)	200 (7)	270 (7)	270 (7)
	130 (9)	15	5 (8)	195 (8)		270 (7)	260 (9)	230 (8)	310 (8)	310 (8)
Standard		17	5 (9)	220	(9)	310 (8)		260 (9)	350 (9)	350 (9)
Length L(n)		195	(10)	245	(10)	350 (9)		290 (10)	390 (10)	390 (10)
		275	(14)	270	(11)	390 (10)		350 (14)	430 (11)	430 (11)
		375	(19)	320	(13)	430 (11)		500 (19)	510 (13)	510 (13)
				370	(15)	470 (12)			590 (15)	590 (15)
				470	(19)	550 (14)			750 (19)	750 (19)
				570	(23)	670 (17)			910 (23)	910 (23)
						870 (22)				
Pitch (P)	15		20		25	40	30	30	40	40
Distance to End (E_s)	5		7.5		10	15	10	10	15	15
Min Distance to End (E_{min})	3		4		4	4	4	4	4	4
Max. Standard Length	295	595	995	995	1195	990	590	590	990	990
Max. Length	300	600	1000	1000	1200	1000	600	600	1000	1000

Note:

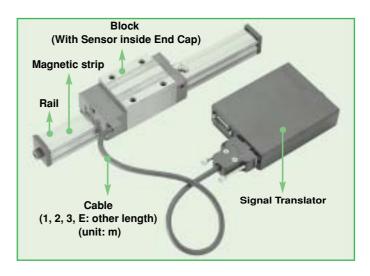
- 1. Tolerance of E value for standard rail is $0.5\sim-0.5$ mm. Tolerance of E value for butt-joint is $0\sim-0.3$ mm.
- 2. Maximum standard length means the max. rail length with standard E value on both side.
- 3. The specification with "M" mark are stainless steel and without "M" mark are alloy steel.


2-3-12 Dimensions for HIWIN MGN/MGW Series

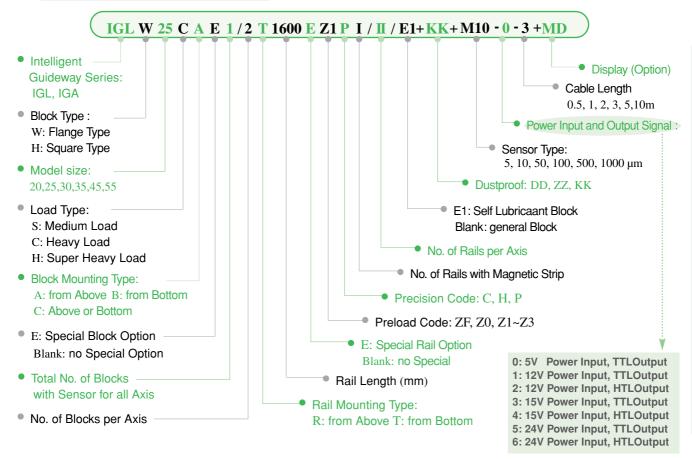
(1). MGN-C / MGN-H

	Din	nension of	ons				ſ	Dimens	ions of	Bloc	k					Dimer	nsions	s of R	ail		Mounting Bolt	Basic Dynamic	Basic Static	Static	Rated M	loment	We	ight
Model No.		ssemb (mm)	•						(mm)								(mm)			for Rail (mm)	Load Rating	Load Rating	Mo	Mx	Му	Block (kg)	Rail (kg/m)
	Н	H₁	N	W	В	Bı	С	L ₁	L	G	Т	Mxℓ	H₂	WR	HR	D	h	d	Р	Е		C (kgf)	C0 (kgf)	(kgf-m)	(Kgī-m)	(kgf-m)	(Ng)	(Ng/III)
MGN 7C	۰	1.5	5	17	12	2.5	8	13.5	22.5		~ n o	M2x2.5	1 5	7	4.8	12	2.3	2 1	15	5	M2x6	100	127	0.48	0.29	0.29	10	0.22
MGN 7H	°	1.5	5	' /	12	2.5	13	21.8	30.8	-	Ø 0.0	IVIZXZ.S	1.5	,	4.0	4.2	2.3	2.4	15	5	IVIZXO	140	200	0.78	0.49	0.49	15	0.22
MGN 9C	10	2	5.5	20	15	2.5	10	18.9	28.9	_	ø 0.8	мзхз	1.8	9	6.5	6	3.5	3.5	20	7.5	M3x8	190	260	1.2	0.75	0.75	16	0.38
MGN 9H	10	_	3.3	20	13	2.5	16	29.9	39.9	-	0.0	IVIOAG	1.0	9	0.5		3.5	3.3	20	7.5	IVIOAO	260	410	2	1.9	1.9	26	0.56
MGN12C	13	3	7.5	27	20	3.5	15	21.7	34.7		ø 0.8	M3X3.5	2.5	12	8	6	15	3.5	25	10	M3x8	290	400	2.6	1.4	1.4	34	0.65
MGN12H	13	3	7.5	21	20	3.5	20	32.4	45.4	-	0.0	IVIOAS.S	2.5	12	0	0	4.5	3.3	23	10	IVIOXO	380	600	3.9	3.7	3.7	54	0.03
MGN15C	16	4	8.5	32	25	3.5	20	26.7	42.1	15	GN3S	M3X4	3	15	10	6	15	3.5	40	15	M3x10	470	570	4.6	2.2	2.2	59	1.06
MGN15H	10	4	0.5	32	23	3.5	25	43.4	58.8	4.5	GNSS	IVI3A4	3	13	10	0	4.5	3.5	40	13	IVIOXIU	650	930	7.5	5.9	5.9	92	1.00

(2). MGW-C / MGW-H

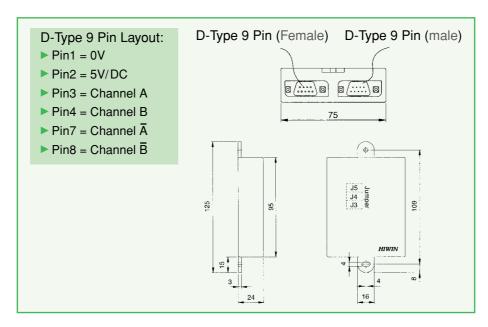


Mod	del No.		of semb (mm)						Dimens	ions of (mm)	Bloc	k					Dim		ions o	f Rai	ı		Mounting Bolt for Rail (mm)	Basic Dynamic Load Rating	Basic Static Load Rating	Static Mo	Rated M	loment My	Wei	ight Rail
		Н	H₁	N	W	В	Bı	С	Lı	L	G	Т	Mxℓ	H ₂	WR	Wв	HR	D	h	d	Р	E	,	C (kgf)	C0 (kgf)	(kgf-m)	(kgf-m)		(kg)	(kg/m)
MGW	V 7C		4.0		0.5	10	_	10	21	31.2		~ 0.0	Movo	4 05	4.4		۲.0	_	0.0	۰.	00	10	Move	140	210	1.6	0.73	0.73	20	0.51
MGW	√7H	9	1.9	5.5	25	19	3	19	30.8	41	-	ø 0.9	М3х3	1.85	14	_	5.2	ь	3.2	3.5	30	10	M3x6	180	320	2.39	1.58	1.58	29	0.51
MGW		12	2.9	6	30	21	4.5	12	27.5	39.3		ø 1.0	МЗхЗ	2.4	18		7	6	4.5	2 5	20	10	M3x8	280	420	4.09	1.93	1.93	40	0.91
MGW	√ 9H	12	2.9	0	30	23	3.5	24	38.5	50.7	-	0.1.0	IVIOXO	2.4	10	_	1	0	4.5	3.5	30	10	IVIOXO	350	600	5.56	3.47	3.47	57	0.91
MGW		14	3.4	8	40	28	6	15	31.3	46.1		~ 1 0	M3x3.6	20	24		8.5	0	4.5	1 5	40	15	M4x	400	570	7.17	2.83	2.83	71	1.49
MGW	V12H	14	3.4	0	40	20	0	28	45.6	60.4	-	0 1.0	IVIOXO.0	2.0	24	-	0.5	0	4.5	4.5	40	13	IVI4X	520	840	10.47	5.85	5.85	103	1.49
MGW		16	3.4	9	60	45	7.5	20	38	54.8	5.2	CNISC	M4x4.2	2 2	12	22	9.5	0	4.5	15	40	15	M4x10	690	940	20.32	5.78	5.78	143	2.86
MGW	V15H	10	3.4	Э	00	43	7.5	35	57	73.8	5.2	GNSS	IVI4X4.2	3.2	42	23	9.5	O	4.5	4.5	40	13	IVI4X I U	910	1410	30.48	12.5	12.5	215	2.00


2-4 IG Series

Features :

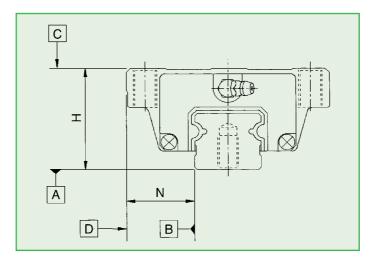
- 1. Integrating the Linear Guideway with magnetic encoder save the installation space greatly.
- Holding high rigidity and high accuracy concurrently from Linear Guideway and magnetic encoder.
- 3. Hiding type of sensor and magnetic strip without damage from external material.
- 4. Non-contact position measurement sensor can achieve Long life performance
- Long distance measurement is possible (Magnetic Strip up to 32 m)
- Works reliably in the worst conditions such as moisture, oil, grease, or dirt, even the vibration, high temperature environment.
- 7. High resolution
- 8. Easy to install



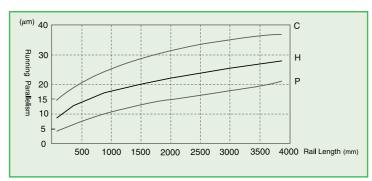
2-4-1 Model Number of IG

2-4-2 Technical Data of HIWIN Intelligent Linear Guideway (IG)

Item	Specifications
Resolution (µm)	5, 10, 50, 100, 500, 1000
Accuracy (µm)	±(25+20xL), L: Strip Length (m)
Max. Speed (m/min)	80 (for 5µm resolution)
Power Supply (V)	5, 12, 15, 24 ±10%
Power Consumption	2 ~ 3 Watt
	A`B`Ā`B Phase Difference 90°±10%;
Output Signals (Pulse)	Output Current per Channel (Select): 5V TTL-20 mA;
	HTL-5 mA
Mandrin v. Tanana anatama	Magnetic Strip: 0~70°C, Sensor: 0~70°C,
Working Temperature	Translator:0~50°C
Storage Temperature	-5°C ~ 70°C
Max. Rail Length	4 m (Max. 32 m for Butt-joint Rail)
Recommended Magnetic	Otrolog of Deil OF year Fach Oids
Strip Length	Stroke of Rail+25mm Each Side
Expansion Coefficient of Strip	16x10 ⁻⁶ (mm/°C)
Protection Class	Magnetic Strip: IP 66, Sensor: IP 66, Translator: IP 43


2-4-3 Accuracy Classes

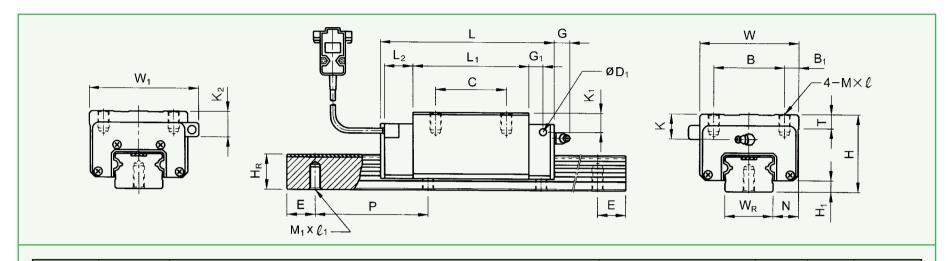
for example: IGL/IGA 25, 30, 35


Unit: mm

ltem	Normal (C)	High (H)	Precision (P)
Dimension Tolerance of Height (H)	± 0.1	± 0.04	0 -0.04
Dimension Tolerance of Width (N)	± 0.1	± 0.04	0 -0.04
Pair Variation of Height (H)	0.02	0.015	0.007
Pair Variation of Width (N) (Master rail)	0.03	0.015	0.007
Running Parallelism of Block Surface C to Surface A	5	See Fig.	1
Running Parallelism of Block Surface D to Surface B	5	See Fig.	1

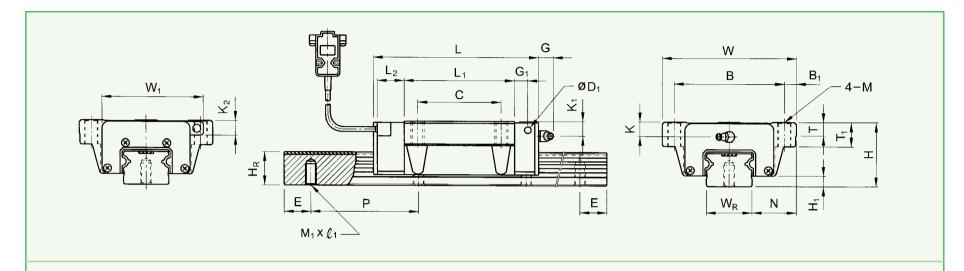
Note: If more detail information is needed, please refer to *HIWIN* linear guideway technical information.

Running parallelism of the Guideway

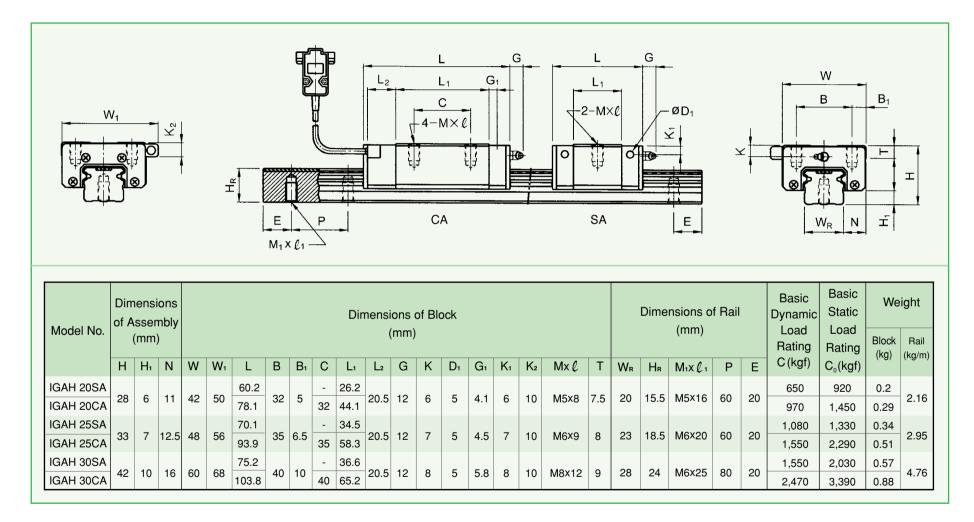


2-4-4 Preload

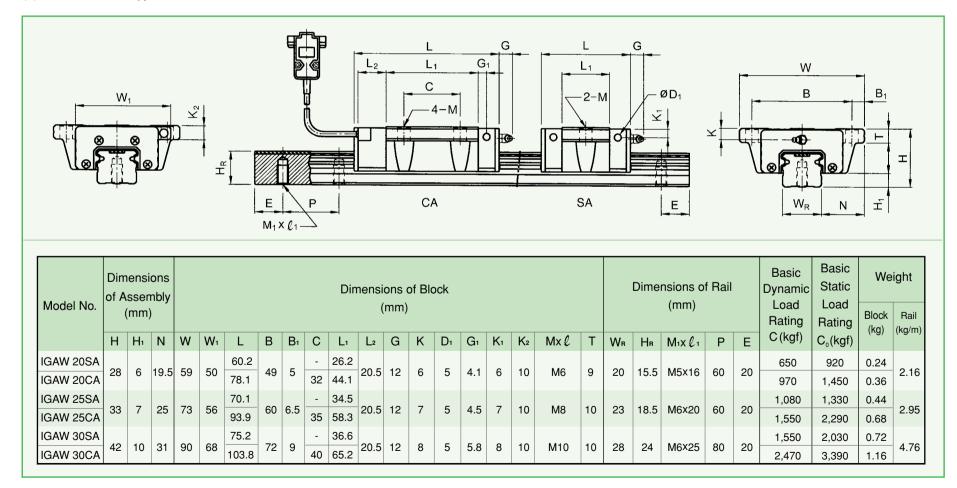
Prelo	ad	Remark
Light Clearance	Clearance 4~10 µm	ZF
Very Light Preload	0	Z0
Light Preload	0.02C	Z1
Medium Preload	0.05C	Z2
Heavy Preload	0.07C	Z 3


Note: The C in Preload column means basic dynamic load rating.

(1). IGLH CA / HA Type


		ensi ssen								Din			of Blo	ock							Dime	nsions o	f Rail		Basic Dynamic	Basic Static	We	eight
Model No.	(H	(mm) H₁	N	W	W ₁	1	В	Bı	С	1.		(mm) G	K	D ₁	G ₁	K ₁	K ₂	M×ℓ	Т	Wr	H₽	(mm)	Р	E	Load Rating C(kgf)	Load Rating C _o (kgf)	Block (kg)	Rail (kg/m)
	П	□11	IN	VV	VV1	L	D	D1	_	L1	L2	G	I.	D1	Gi	IX1	r \2	IVIX &	'	VVR	ĦR	M₁x ℓ₁	Р	Е				
IGLH 20CA	30	5	12	44	51.5	88.3	32	6	36	52.7	20.5	12	7.1	5	5.3	7.1	11	M5×6	8	20	15	M6×8	60	20	1,650	2,670	0.37	2.08
IGLH 20HA	30	5	12	44	51.5	102.6	32	0	50	67	20.5	12	7.1	5	5.5	7.1	11	O^CIVI	0	20	13	IVIOAG	00	20	2,100	3,400	0.46	2.00
IGLH 25CA						95.1			35	57.6				_						00	00	Movdo	00	00	2,410	3,880	0.59	0.45
IGLH 25HA	40	6.5	12.5	48	56.9	114.1	35	6.5	50	76.6	20.5	12	11.2	5	6.8	11	15	M6x8	8	23	20	M6x12	60	20	3,210	5,180	0.78	3.15
IGLH 30CA						111.9			40	72				_						00	00	Movas	00	00	3,380	5,460	1.04	4.44
IGLH 30HA	45	7	16	60	68	132.9	40	10	60	93	20.5	12	10.5	5	7.8	10.5	14	M8x10	8	28	23	M8x15	80	20	4,400	7,100	1.33	4.41
IGLH 35CA						123.9			50	82				_						0.4	0.5	Movac	00	00	4,180	6,740	1.72	F 00
IGLH 35HA	55	8	18	70	77	147.7	50	10	72	105.8	20.5	12	15	5	8.8	16	17	M8×12	10	34	25	M8×16	80	20	5,430	8,770	2.24	5.93
IGLH 45CA						143.7			60	99.6										45	00	Manyon	105	00.5	6,020	9,710	3.16	10.01
IGLH 45HA	70	10	20.5	86	92.3	177.1	60	13	80	133	20.5	12.9	21	8.5	10	21	22	M10×17	15	45	32	M12x20	105	22.5	8,430	13,600	4.28	10.01
IGLH 55CA	00	40	۰۰ -	400	407	166.3	7.5	40.5		115.8	00.5	400	00	٥.	44	00	00	Manyan	4-7	53	40	M14x24	120	30	9,740	13,220	5.30	14 92
IGLH 55HA	80	13	23.5	100	107	205.2	75	12.5	95	154.7	20.5	12.9	22	8.5	11	22	22	M12x18	17	55	40	IVI 14X24	120	30	11,810	18,510	6.40	14.82

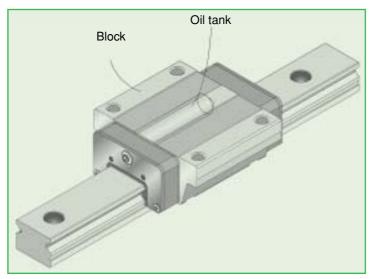
(2). IGLW CA / HA Type



MadalNa		nensi Isser	ions mbly							Din	nensi			ock								Dime	nsions o	f Rail		Basic Dynamic	Basic Static	We	eight
Model No.		(mm	,								(mm)											(mm)			Load Rating	Load Rating	Block (kg)	Rail (kg/m)
	Н	H₁	N	W	W ₁	L	В	B ₁	С	L ₁	L ₂	G	K	М	D ₁	G₁	K ₁	K ₂	Т	T ₁	W _R	HR	M₁xℓ₁	Р	E	C (kgf)	C₀(kgf)		
IGLW 20CA		_	04.5	00	04	88.3		_	40	52.7	00.5	40			_		7.4		•	4.0	00	4.5	Meyo	00	00	1,650	2,670	0.46	0.00
IGLW 20HA	30	5	21.5	63	61	102.6	53	5	40	67	20.5	12	7.1	M6	5	5.3	7.1	11	8	10	20	15	M6x8	60	20	2,100	3,400	0.58	2.08
IGLW 25CA	00	٥.	00.5	70	07.5	95.1		٥.	45	57.6	00.5	40	7.0	140	_		_		•		00	20	MOVIO	60	00	2,410	3,880	0.64	0.15
IGLW 25HA	36	6.5	23.5	70	67.5	114.1	57	6.5	45	76.6	20.5	12	7.2	M8	5	6.8	7	11	8	14	23	20	M6×12	60	20	3,210	5,180	0.86	3.15
IGLW 30CA	40	_	0.4	00	00	111.9	70	_		72	00.5	10	7.	N440	_	7.0	7.5	4.4	0	10	28	23	M8x15	80	20	3,380	5,460	1.20	4.41
IGLW 30HA	42	'	31	90	83	132.9	72	9	52	93	20.5	12	7.5	M10	5	7.8	7.5	11	8	16	20	23	IVIOX 13	80	20	4,400	7,100	1.56	4.41
IGLW 35CA	40		00	100	00	123.9	00	0	00	82	00.5	10		N440	_	0.0		10	10	10	34	25	Movac	80	20	4,180	6,740	1.78	F 00
IGLW 35HA	48	8	33	100	92	147.7	82	9	62	105.8	20.5	12	8	M10	5	8.8	9	10	10	18	34	25	M8x16	80	20	5,430	8,770	2.34	5.93
IGLW 45CA		40	07.5	100	400.0	143.7	400	40	00	99.6	00.5	400			٥.	40		40	4.5	00	45	00	M40v00	105	00.5	6,020	9,710	3.13	10.01
IGLW 45HA	60	10	37.5	120	109.3	177.1	100	10	80	133	20.5	12.9	11	M12	8.5	10	11	12	15	22	45	32	M12x20	105	22.5	8,430	13,600	4.27	10.01
IGLW 55CA	70	10	40 E	140	107	166.3	116	10		115.8	20 E	100	10	1111	0.5	4.4	10	10	17	26	53	40	M14v24	120	30	9,740	13,220	5.50	14 00
IGLW 55HA	70	13	43.5	140	127	205.2	116	12	95	154.7	20.5	12.9	12	M14	8.5	11	12	12	17	26	53	40	M14x24	120	30	11,810	18,510	6.70	14.82

(3). IGAH SA / CA Type

(4). IGAW SA / CA Type



2-5 El Series

2-5-1 Structure of E1 Linear Guideway:

The construction of E1 Linear Guideway is shown in the figure, the Block with self-lubricant apparatus. The lubricant oil will be feed directly on the running ball by capillarity.

2-5-2 Feature of E1 Linear Guideway:

(1). Cost reduction: Saving cost from equipping the lubricant device and purchasing the oil.

■ Example LG35C

Item	Force lubricant	E1 (Solf Jubricant) Plack
item	Force lubricant	E1 (Self-lubricant) Block
Lubricant device	\$ XXX	-
Design and installation		
of lubricant device	\$ XXX	-
Cost of oil purchase	0.3cc/hr $ imes$ 8hrs/day $ imes$ 280days/year $ imes$	17 cc(5 years10000km) $ imes$
Cost of oil purchase	$5year = 3360 cc \times cost/cc = \$ XXX$	cost/cc = \$ XX
Cost of change oil	3~5hrs/time $ imes$ 3~5times/year $ imes$ 5year $ imes$	
Cost of change oil	cost/time= \$ XXX	·
Wasto oil disposal	3~5 times/year $ imes$ 5year $ imes$	
Waste oil disposal	cost/time = \$ XXX	- -

(2).Clean and environmental:

No worry about the pollution caused from oil leaking, therefor, it is suitable for high request clean environment.

(3). Maintenance free for long period using :

Self-lubricant Block is maintained free for general application. The lubricant oil will be feed directly on the rolling balls, so it can be used lastingly without wear.

(3). Save installation space:

There is nothing change for the length, accuracy, preload, rated static load and rated dynamic load of Block, so it's no need for increasing the driven power.

(4). Used in special environment :

The outstanding lubricating ability can be achieved by combining with use of grease, so it is suitable for dusty, worse weather and watery environment.

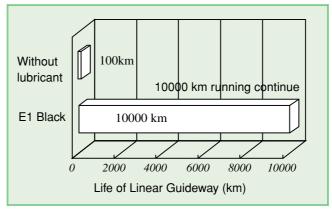
2-5-3 Application:

- Machine tool
- Manufacture machine: Plastic injection, printing, paper making, textile machine, food processing machine, wood working machine etc.
- Electronic machine: Semi conductor equipment, robot, X-Y table, measuring and inspecting equipment.
- Others: Medical equipment, transporting device, housing equipment

2-5-4 Specification:

- Add "/E1" after the specification of Linear Guideway.
 - Ex. LGW25CCE2R1600EZ1PII+ZZ/E1
 - Ex. AGW30CAE2R1600EZ1PII+ZZ/E1

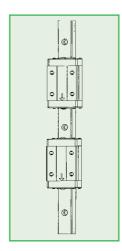
Appplicable Specification


Corios	l and home	Square type		Flange type	
Series	Load type	Tap hole	Tap hole	Drilled hole	Combination
LG	Heavy Load	LGH - CA	-	-	LGW - CC
LG	Super Heavy Load	LGH - HA	-	-	LGW - HC
AG	Medium Load	AGH - SA	AGW - SA	-	-
7.0	Heavy Load	AGH - CA	AGW - CA	-	-

2-5-5 Lubrication Capability of E1 Linear Guideway:

Life testing with light Load :
 Test condition :

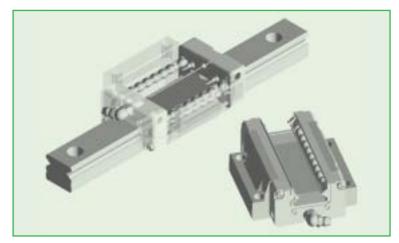
Model No : LGW35CCSpeed : 80m/minStroke : 1500mmLoad : 500kgf


- Characteristic of lubricant oil
- 1. Synthetic base oil with stable characteristic.
- 2. Range of oil operation temperature -15~240 °C, include the most condition of Linear Guideway.
- 3. Reduce friction and antiabrasion
- 4. Against corrosion and rust.
- 5. Non-toxic

*Note: the test was carried out without combining the use of grease.

2-5-6 Installation

Becareful when using in vertical axis, the arrow mark on block must toward the ground. If inverse the block direction then the self-lubricant function can not work and demage will occur soon.

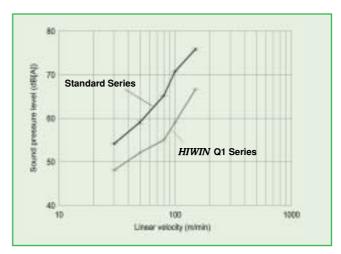


2-6 QI Series

This HIWIN Q1 series linear guideway adapt the special resin-made ball spacer which not only working as a damper but also as an oil retainer. The spacer absorbs the vibration through contact and lubricant releasing on the area working with the balls.

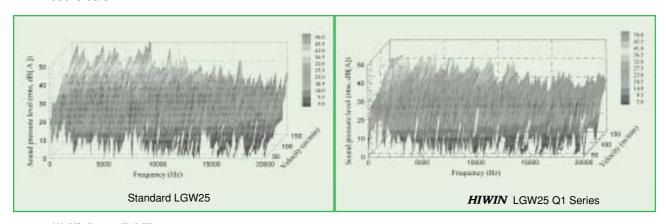
Application Issues:

- Low noise demanding system especially under higher working speed.
- Short-stroke motion and/or higher loading situation (cooperated with E1 series is suggested)



Features:

(1) Lower Noise

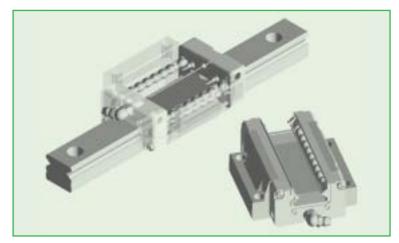

The spacer can significantly reduce the sound pressure level (SPL) of the standard guideway especially under a higher moving velocity.

Test Type: LGW25	(light preload)
Lubrication	Grease (AV2)
Stroke	700 mm
Position of Condenser	500 mm above the
Microphone	test specimen

(2) Softer Tone

Some noise tone can be eliminated even at a higher velocity. HIWIN Q1 Series is more friendly to the user's ears.

(3) Higher reliability

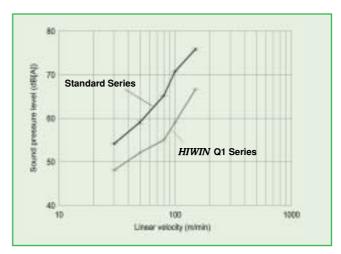

The constant lubricant-releasing mechanism makes it possible to obtain a more reliable working condition and a more economical maintenance.

2-6 QI Series

This HIWIN Q1 series linear guideway adapt the special resin-made ball spacer which not only working as a damper but also as an oil retainer. The spacer absorbs the vibration through contact and lubricant releasing on the area working with the balls.

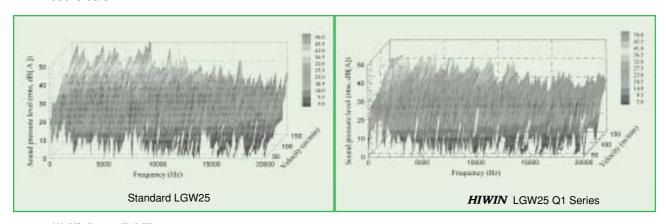
Application Issues:

- Low noise demanding system especially under higher working speed.
- Short-stroke motion and/or higher loading situation (cooperated with E1 series is suggested)



Features:

(1) Lower Noise


The spacer can significantly reduce the sound pressure level (SPL) of the standard guideway especially under a higher moving velocity.

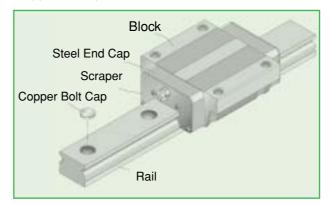
Test Type: LGW25	(light preload)
Lubrication	Grease (AV2)
Stroke	700 mm
Position of Condenser	500 mm above the
Microphone	test specimen

(2) Softer Tone

Some noise tone can be eliminated even at a higher velocity. HIWIN Q1 Series is more friendly to the user's ears.

(3) Higher reliability

The constant lubricant-releasing mechanism makes it possible to obtain a more reliable working condition and a more economical maintenance.


2-7 Option Function

◆ Metallic End Cap Type :

Linear Guideway with heat resistance steel end cap and copper bolt cap

- (1) Feature : Well temperature resistant ability.

 Service temperature under 150°C , and instance temperature can up to 200°C
- (2) Application: Heat treatment equipment, welding machine, glass manufacturing equipment and vacuum using equipment (without vapor dispersion from plastic or rubber at high temperature)

(3) Applicable Series:

Series	Model No.
LG	15 \ 20 \ 25 \ 30 \ 35 \ 45 \ 55
AG	15 \ 20 \ 25 \ 30
MGN	9 \ 12 \ 15

(4) Specification Number:

Add the mark "/SE" after the specification number for steel end cap and copper bolt cap.

→ Ex : LGW25CA2R1000Z0PII/SE→ Ex : AGW25CA2R1000Z0PII/SE→ Ex : MGN15C2R1000Z0PII/SE

(5) Copper Bolt Cap Dimension:

Cap code	Bolt Size	Cap Diameter	Cap Thickness	Model No. of	
		mm	mm	Linear Guideway	
C3	M3	6.15	1.2	AGR15R	
				MGN12/15R	
C4	M4	7.65	1.2	LGR15R	
C5	M5	9.65	2.8	LGR20R	
				AGR20R	
C6	M6	11.15	2.8	LGR25R	
				AGR25/30R	
C8	M8	14.15	3.5	LGR30/35R	
C12	M12	20.15	4	LGR45R	
C14	M14	23.15	4	LGR55R	

Note: The use of the catalogue should be combined with the Lineat Guideway technical information. (The specifications in this catalogue are subject to change without notification.)

G99TE04-0202 ■			
MEMO			

M _{EMO}	